To: Distribution
Subject: Dash 8 Series 400, Airport Planning Manual, PSM 1–84–13

This is Revision 4 of the Dash 8 Series 400, Airport Planning Manual, PSM 1–84–13, dated Dec 05/2014.

We recommend this letter of transmittal be retained for record purposes.
The information, technical data and the designs disclosed in this document ("the information") are either the exclusive property of Bombardier Inc. or are subject to proprietary rights of others. The information is not to be used for design or manufacture or disclosed to others without the express prior written consent of Bombardier Inc. The holder of this document, by its retention and use, agrees to hold the information in confidence. These restrictions do not apply to persons having proprietary rights in the information.
Technical Publications
Manual Change Request

| TO: MCR FOCAL, TECHNICAL PUBLICATIONS |
| BOMBARDIER AEROSPACE |
| 123 GARRATT BLVD. |
| TORONTO, ONTARIO, CANADA, M3K 1Y5 |
| MAIL STOP: N42–25 FAX: (416) 375–4538 |
| E–MAIL ADDRESS: mcrfocal@aero.bombardier.com |

ALL fields marked with an asterisk * are required

Contact Information

Name:	*Corporation Name:*	*Dept Name/Code:*
Address:	City:	State/Province:
Postal Code / Zip:	Country:	
Mobile/Cell Phone:	Fax Number:	*E–Mail:*

☐ I would like to receive notification of actions on this request.
NOTE: Responses will only be sent by electronic mail.

Publication Information

Aircraft Type:	*Aircraft Model:*	*PSM/CSP:*	
Publication Name/Revision:	*Media Type:*	*Chapter/Section/Subject/Task (or) Page Block/Page Number:*	
Paper	DVD	CD–ROM	IFLY

Originator’s reference number: Impact on other programs:

*Description of Change Request:

Reason for change:

Reference data provided: ☐ Yes ☐ No Description:

NOTE: Electronic submissions of MCRs are available on www.iffybombardier.com

Oct 4/2013
<table>
<thead>
<tr>
<th>Revision No.</th>
<th>Issue Date</th>
<th>Date Inserted</th>
<th>Inserted By</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Feb 18/2000</td>
<td>Feb 18/2000</td>
<td>BCSG</td>
</tr>
<tr>
<td>3</td>
<td>May 28/2001</td>
<td>May 28/2001</td>
<td>BCSG</td>
</tr>
<tr>
<td>4</td>
<td>Dec 05/2014</td>
<td>Dec 04/2014</td>
<td>BCSG</td>
</tr>
<tr>
<td>Revision No.</td>
<td>Issue Date</td>
<td>Date Inserted</td>
<td>Inserted By</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AIRPORT PLANNING MANUAL

LIST OF EFFECTIVE PAGES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Date</th>
<th>Chapter</th>
<th>Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Pages</td>
<td>1</td>
<td>* Dec 05/2014</td>
<td></td>
<td>32</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>* Dec 05/2014</td>
<td></td>
<td>33</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td>Contents</td>
<td>1</td>
<td>* Dec 05/2014</td>
<td></td>
<td>34</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>* Dec 05/2014</td>
<td></td>
<td>35</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>* Dec 05/2014</td>
<td></td>
<td>36</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>* Dec 05/2014</td>
<td></td>
<td>37</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>* Dec 05/2014</td>
<td></td>
<td>38</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>* Dec 05/2014</td>
<td></td>
<td>39</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>1</td>
<td>* Dec 05/2014</td>
<td></td>
<td>40</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>May 28/2001</td>
<td></td>
<td>41</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 2</td>
<td>1</td>
<td>May 28/2001</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>2</td>
<td>* Dec 05/2014</td>
<td></td>
<td>2</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>* Dec 05/2014</td>
<td></td>
<td>3</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>* Dec 05/2014</td>
<td></td>
<td>4</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>* Dec 05/2014</td>
<td></td>
<td>5</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>* Dec 05/2014</td>
<td></td>
<td>6</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>* Dec 05/2014</td>
<td></td>
<td>7</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>* Dec 05/2014</td>
<td></td>
<td>8</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>* Dec 05/2014</td>
<td></td>
<td>9</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>* Dec 05/2014</td>
<td></td>
<td>10</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>* Dec 05/2014</td>
<td></td>
<td>11</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>* Dec 05/2014</td>
<td></td>
<td>12</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>* Dec 05/2014</td>
<td></td>
<td>13</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>* Dec 05/2014</td>
<td></td>
<td>14</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>* Dec 05/2014</td>
<td></td>
<td>15</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>* Dec 05/2014</td>
<td></td>
<td>16</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>* Dec 05/2014</td>
<td></td>
<td>17</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>* Dec 05/2014</td>
<td>Chapter 3</td>
<td>1</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>* Dec 05/2014</td>
<td></td>
<td>2</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>* Dec 05/2014</td>
<td></td>
<td>3</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>* Dec 05/2014</td>
<td></td>
<td>4</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>* Dec 05/2014</td>
<td></td>
<td>5</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>* Dec 05/2014</td>
<td></td>
<td>6</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>* Dec 05/2014</td>
<td></td>
<td>7</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>* Dec 05/2014</td>
<td></td>
<td>8</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>* Dec 05/2014</td>
<td></td>
<td>9</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>* Dec 05/2014</td>
<td></td>
<td>10</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>* Dec 05/2014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>* Dec 05/2014</td>
<td>Chapter 5</td>
<td>1</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>* Dec 05/2014</td>
<td></td>
<td>2</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>* Dec 05/2014</td>
<td></td>
<td>3</td>
<td>* Dec 05/2014</td>
</tr>
</tbody>
</table>

The asterisk (*) indicates pages revised, added or deleted by current revision.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Date</th>
<th>Chapter</th>
<th>Page</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>*</td>
<td>Dec 05/2014</td>
<td>4</td>
<td>*</td>
<td>Dec 05/2014</td>
</tr>
<tr>
<td>5</td>
<td>*</td>
<td>Dec 05/2014</td>
<td>5</td>
<td>*</td>
<td>Dec 05/2014</td>
</tr>
<tr>
<td>6</td>
<td>*</td>
<td>Dec 05/2014</td>
<td>6</td>
<td>*</td>
<td>Dec 05/2014</td>
</tr>
<tr>
<td>7</td>
<td>*</td>
<td>Dec 05/2014</td>
<td>7</td>
<td>*</td>
<td>Dec 05/2014</td>
</tr>
<tr>
<td>8</td>
<td>*</td>
<td>Dec 05/2014</td>
<td>8</td>
<td>*</td>
<td>Dec 05/2014</td>
</tr>
<tr>
<td>9</td>
<td>*</td>
<td>Dec 05/2014</td>
<td>9</td>
<td>*</td>
<td>Dec 05/2014</td>
</tr>
<tr>
<td>10</td>
<td>*</td>
<td>Dec 05/2014</td>
<td>10</td>
<td>*</td>
<td>Dec 05/2014</td>
</tr>
<tr>
<td>11</td>
<td>*</td>
<td>Dec 05/2014</td>
<td>11</td>
<td>*</td>
<td>Dec 05/2014</td>
</tr>
<tr>
<td>12</td>
<td>*</td>
<td>Dec 05/2014</td>
<td>12</td>
<td>*</td>
<td>Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 6</td>
<td>1</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 7</td>
<td>1</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 8</td>
<td>1</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 9</td>
<td>1</td>
<td>May 28/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>* Dec 05/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>* Dec 05/2014</td>
</tr>
</tbody>
</table>

The asterisk (*) indicates pages revised, added or deleted by current revision.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1 PREFACE</td>
<td>1</td>
</tr>
<tr>
<td>Scope</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 3 AIRCRAFT PERFORMANCE

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>1</td>
</tr>
<tr>
<td>Payload/Range at Maximum Cruise Rating and Long Range Cruise</td>
<td>3</td>
</tr>
<tr>
<td>Maximum Permissible Take-Off Weight (Wat Limit) – Flaps 5 Degrees</td>
<td>4</td>
</tr>
<tr>
<td>Maximum Permissible Take-Off Weight (Wat Limit) – Flaps 10 Degrees</td>
<td>5</td>
</tr>
<tr>
<td>Maximum Permissible Take-Off Weight (Wat Limit) – Flaps 15 Degrees</td>
<td>6</td>
</tr>
<tr>
<td>Take-Off Runway Length Requirements – Flaps 5 Degrees</td>
<td>7</td>
</tr>
<tr>
<td>Take-Off Runway Length Requirements – Flaps 10 Degrees</td>
<td>8</td>
</tr>
<tr>
<td>Take-Off Runway Length Requirements – Flaps 15 Degrees</td>
<td>9</td>
</tr>
<tr>
<td>Max. Landing Weight – Landing Flaps 10 and Approach Flaps 5 Degrees</td>
<td>10</td>
</tr>
<tr>
<td>Max. Landing Weight – Landing Flaps 15 and Approach Flaps 10 Degrees</td>
<td>11</td>
</tr>
<tr>
<td>Max. Landing Weight – Landing Flaps 35 and Approach Flaps 15 Degrees</td>
<td>12</td>
</tr>
<tr>
<td>Unfactored Landing Distance – Flaps 10 Degrees</td>
<td>13</td>
</tr>
<tr>
<td>Unfactored Landing Distance – Flaps 15 Degrees</td>
<td>14</td>
</tr>
<tr>
<td>Unfactored Landing Distance – Flaps 35 Degrees</td>
<td>15</td>
</tr>
<tr>
<td>Landing – Runway Length Required</td>
<td>16</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER 4 GROUND MANEUVERING

- General Information 1
- Turning Radii (No Slip Angle) 2
- Turning Radii Data (No Slip Angle) 3
- Turning Radius at Minimum Power 4
- Greater Than 90 Degree Turn – Runway to Taxiway with Tracks 5
- 90 Degree Turn – Runway to Taxiway with Nose Gear and Cockpit Tracks 6
- 90 Degree Turn – Taxiway to Taxiway with Nose Gear and Cockpit Tracks 7
- Runway Holding Bay (Apron) 8
- Aircraft Tie Down Provisions 9

CHAPTER 5 TERMINAL SERVICING

- General Information 1
- Aircraft Servicing Arrangement (Typical – No APU) 2
- Rapid Turnaround Using FWD and AFT Doors 5
- Rapid Turnaround Using FWD Door Only 6
- Ground Servicing Point Locations 7
- Ground Service Connections Data 11
- Electrical Requirements For Engine Starting 14
- Ground Towing Requirements 15
- Ground Air Conditioning Requirements – Pre-Conditioned Airplane 16

Series: 400

Dec 05/2014
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 6 OPERATING CONDITIONS AND NOISE DATA</td>
<td></td>
</tr>
<tr>
<td>General Information</td>
<td>1</td>
</tr>
<tr>
<td>Engine Exhaust Temp. Contours at Ground Idle − Top View</td>
<td>2</td>
</tr>
<tr>
<td>Engine Exhaust Temp. Contours at Ground Idle − Side View</td>
<td>3</td>
</tr>
<tr>
<td>Engine Exhaust Temp. Contours at Flight Idle − Top View</td>
<td>4</td>
</tr>
<tr>
<td>Engine Exhaust Temp. Contours at Flight Idle − Side View</td>
<td>5</td>
</tr>
<tr>
<td>Engine Exhaust Temp. Contours at Max. T.O. Power − Top View</td>
<td>6</td>
</tr>
<tr>
<td>Engine Exhaust Temp. Contours at Max. T.O. Power − Side View</td>
<td>7</td>
</tr>
<tr>
<td>Takeoff and Landing Noise Footprint − 3 Degree Approach</td>
<td>8</td>
</tr>
<tr>
<td>Takeoff and Landing Noise Footprint − 4 Degrees Approach</td>
<td>9</td>
</tr>
<tr>
<td>Ramp Noise Test Results for Optional APU</td>
<td>10</td>
</tr>
<tr>
<td>Propeller Slipstream Velocity Contours at Max Takeoff Power</td>
<td>11</td>
</tr>
<tr>
<td>Propeller Slipstream Velocity Contours on Ground</td>
<td>12</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER 7 PAVEMENT DATA

- General Information .. 1
- Landing Gear Footprint .. 2
- Maximum Pavement Loads .. 3
- Landing Gear Loading on Pavement 4
- Flexible Pavement Requirements – CBR (32x8.8−16 Tires) ... 5
- Flexible Pavement Requirements – CBR (34x10.75−16 Tires) 6
- Flexible Pavement Requirements – LCN Conversion (32x8.8−16 Tires) .. 7
- Flexible Pavement Requirements – LCN Conversion (34x10.75−16 Tires) .. 8
- Rigid Pavement Requirements – LCN Conversion (32x8.8−16 Tires) .. 9
- Rigid Pavement Requirements – LCN Conversion (34x10.75−16 Tires) .. 10
- Aircraft Classification Number – Flexible Pavement (32x8.8−16 Tires) .. 11
- Aircraft Classification Number – Flexible Pavement (34x10.75−16 Tires) .. 12
- Aircraft Classification Number – Rigid Pavement (32x8.8−16 Tires) .. 13
- Aircraft Classification Number – Rigid Pavement (34x10.75−16 Tires) .. 14

CHAPTER 8 DERIVATIVE AIRCRAFT

- General Information .. 1

CHAPTER 9 SCALED DRAWINGS OF DASH−8 SERIES 400

- General Information .. 1
- Scaled Dash 8, Series 400 (Model 402) Drawing – 1 in. = 32 ft (1:384) .. 2
- Scaled (Model 402) Drawing – 1in. = 50 ft (1:600), 1in. = 100 ft (1:1200) .. 3
- Scaled Dash 8, Series 400 (Model 402) Drawing – 1:500 and 1:1000 (Metric) .. 4
CHAPTER 1

PREFACE
Scope

1. Purpose
 A. This manual provides, in a standardized format, airport planning data for the Dash–8, Series 400 (Model 402). Because operational procedures are different for each airline and operator, the airport planner must coordinate specific data with the user airline before the design of facilities.
 B. The data contained in Chapter 3 (Aircraft Performance) is for reference only. Refer to the applicable Aircraft Flight Manual (AFM) for Model 402 operating–data.

2. Introduction
 A. The content of this document conforms to NAS 3601, Revision 6 (15 Jul/94). NAS 3601 is the result of agreements between representatives of the organizations that follow:
 − Aerospace industries
 − Airport operators
 − Air Transport Association of America
 − International Air Transport Association.
 B. This manual provides Model 402 data for airport planners and operators, airlines, architectural and engineering consultant organizations (as well as other interested industry agencies). The content of this manual will change as options and aircraft changes occur. The data contained in this manual represents the typical Dash–8 Series 400 (Model 402) aircraft.
 C. For more information, contact:
 Director, Technical Publications
 Regional Aircraft Division
 Bombardier Aerospace
 Mail Stop N42–25
 123 Garratt Blvd., Downsview
 Ontario, Canada
 M3K 1Y5.

3. A Brief Description of the Dash–8 Series 400 (Model 402) Aircraft
 A. The Dash–8 Series 400 (Model 402) is a pressurized, commercial transport airplane that is designed to accommodate 70 to 86 passengers. This airplane establishes new standards in speed, comfort and efficiency. A new feature of the Dash–8 series is the Noise and Vibration Suppression (NVS) system, which dramatically reduces cabin noise in flight.
B. The aircraft is powered by two Pratt and Whitney PW150A turboprop engines. Large diameter, slow-turning, six-bladed Dowty R408 propellers provide high thrust efficiency and low noise levels.

C. The Dash-8 Series 400 is capable of economic operations over a broad range of applications. These are:

- Scheduled airline operations
- Resource and regional development work
- Corporate and military transport roles.

D. The aircraft is capable of operation in ambient temperatures of between −65 °F (−54 °C) and 122 °F (50 °C), unless otherwise specified. Transfer from one climate to another can be done without penalties or extensive modifications or adjustment.

E. Significant features of interest to the airport planner include the items that follow:

- The engines are located high and on the wing
- The horizontal stabilizer is located on top of the fin
- The aircraft has a self-contained airstair entry-door at the forward end of the cabin
- Connections for single-point and overwing gravity refueling are provided
- All servicing can be accomplished with standard ground equipment
- High exhaust outlets produce modest pressure and temperature profiles.
CHAPTER 2
AIRCRAFT DESCRIPTION
General Information

1. General

The Model 402 has a maximum take–off weight of up to 64,500 lb (29,257 kg). Other maximum weight parameters such as taxi weight (also known as ramp weight), landing weight and zero fuel weight are set accordingly.

2. Contents of Chapter

This chapter contains the items that follow:

A. General airplane characteristics and dimensions are shown in Figure 2–1 and Figure 2–2.
B. Ground clearances are shown in Figure 2–3, Figure 2–4, Figure 2–5, Figure 2–6 and Figure 2–7.
C. Interior configurations are shown in Figure 2–8, Figure 2–9, Figure 2–10.
D. A cross–section of the passenger compartment is shown in Figure 2–11.
E. A floor loading diagram is shown in Figure 2–12.
F. Dimensions of the forward and aft baggage compartments are shown in Figure 2–13, Figure 2–14, and Figure 2–15.
G. Nets and tiedowns of the aft baggage compartment are shown in Figure 2–16 and Figure 2–17.
H. Clearances for the passenger, the service, the baggage and the forward type I emergency exit doors are shown in Figure 2–18, Figure 2–19, Figure 2–20, Figure 2–21, and Figure 2–22.
I. External handles of the various doors are shown in Figure 2–23.
J. Horizontal clearances between the fuselage and nacelles are shown in Figure 2–24.
K. Vertical dimensions of a typical aft baggage compartment is shown in Figure 2–25.
L. Ground clearances of empennage and sill of aft baggage door is shown in Figure 2–26.

3. Definitions

The definitions that follow are used throughout this manual (refer to Figure 2–1):

A. **Maximum Design Taxi Weight (MTW)**

 This is the maximum weight at which an aircraft can move safely on the ground. It includes the fuel for those displacements and the takeoff run.

B. **Maximum Design Landing Weight (MLW)**

 This is the maximum approved weight at which an aircraft can land.
C. **Maximum Design Take−off Weight (MTOW)**
This is the maximum approved weight at which an aircraft can start a take−off run.

D. **Operational Weight Empty (OWE)**
This is the weight of structure, power plant, furnishings, systems, unusable fuel and other items of equipment that are a necessary part of an aircraft configuration. The OWE also includes certain standard items, personnel, equipment and supplies required for full operations, but does not include usable fuel or payload.

E. **Maximum Design Zero Fuel Weight (MZFW)**
This is the maximum weight of an aircraft before the usable fuel is loaded on the aircraft.

F. **Maximum Payload**
This is the weight you get when you subtract the OWE from the MZFW.

G. **Maximum Seating Capacity**
This is the maximum number of passengers specifically certified or anticipated for certification.

H. **Maximum Cargo Volume**
This is the maximum space available for cargo.

I. **Usable Fuel**
This is the fuel available for the aircraft engines.
General Airplane Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>Basic Gross Weight</th>
<th>Intermediate Gross Weight</th>
<th>High Gross Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Design Taxi Weight</td>
<td>61,900 lb (28,077 kg)</td>
<td>64,130 lb (29,089 kg)</td>
<td>64,700 lb (29,347 kg)</td>
</tr>
<tr>
<td>Maximum Design Take-off Weight</td>
<td>61,700 lb (27,987 kg)</td>
<td>63,930 lb (28,998 kg)</td>
<td>64,500 lb (29,257 kg)</td>
</tr>
<tr>
<td>Maximum Design Landing Weight</td>
<td>60,500 lb (27,442 kg)</td>
<td>61,750 lb (28,009 kg)</td>
<td>61,750 lb (28,009 kg)</td>
</tr>
<tr>
<td>Maximum Design Zero Fuel Weight</td>
<td>55,500 lb (25,174 kg)</td>
<td>57,000 lb (25,855 kg)</td>
<td>57,000 lb (25,855 kg)</td>
</tr>
</tbody>
</table>

Powerplant

<table>
<thead>
<tr>
<th>Description</th>
<th>Weight (Per Side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine (PWC 150 A, Dressed, including Exhaust Nozzle)</td>
<td>1925 lb (873.1 kg)</td>
</tr>
<tr>
<td>Exhaust Only (Jet Pipe)</td>
<td>169.5 lb (76.9 kg)</td>
</tr>
<tr>
<td>Propellers (Dowty R408, Six-Blade, includes Beta Tube Unit and Spinner)</td>
<td>555.4 lb (251.9 kg)</td>
</tr>
</tbody>
</table>

APU

<table>
<thead>
<tr>
<th>Description</th>
<th>Weight (Per Side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APU Wet</td>
<td>139.0 lb (63.0 kg)</td>
</tr>
<tr>
<td>Starter/Generator</td>
<td>40.4 lb (18.3 kg)</td>
</tr>
</tbody>
</table>

Tank Capacity – Usable Fuel

<table>
<thead>
<tr>
<th>Standard Tanks</th>
<th>US Gals</th>
<th>LBS</th>
<th>Litres</th>
<th>KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>862</td>
<td>5862</td>
<td>3263</td>
<td>2659</td>
</tr>
<tr>
<td>Right</td>
<td>862</td>
<td>5862</td>
<td>3263</td>
<td>2659</td>
</tr>
<tr>
<td>Total</td>
<td>1724</td>
<td>11724</td>
<td>6526</td>
<td>5318</td>
</tr>
</tbody>
</table>

NOTE

Based on 6.8 lb/U.S. Gallon (0.775 kg/l)

General Airplane Characteristics (Sheet 1 of 2)

Figure 2 – 1
POWER PLANT WEIGHT BREAKDOWN DETAILS

DRESSED POWERPLANT

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>WEIGHT PER SIDE (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE (DRY, WITH DRAIN SYSTEM INSTALLED)</td>
<td>1573.0</td>
</tr>
<tr>
<td>DC STARTER GENERATOR</td>
<td>39.3</td>
</tr>
<tr>
<td>AC GENERATOR</td>
<td>47.0</td>
</tr>
<tr>
<td>FUEL ITEMS</td>
<td>2.1</td>
</tr>
<tr>
<td>ENGINE HYDRAULIC DRIVE PUMP</td>
<td>12.0</td>
</tr>
<tr>
<td>P2.7 HBOV DUCT</td>
<td>2.1</td>
</tr>
<tr>
<td>P2.2 HBOV DUCT</td>
<td>1.7</td>
</tr>
<tr>
<td>INTAKE ADAPTER AND V−BAND CLAMP</td>
<td>11.0</td>
</tr>
<tr>
<td>ENGINE MOUNTS SYSTEM</td>
<td>76.6</td>
</tr>
<tr>
<td>EXHAUST NOZZLE ASSEMBLY</td>
<td>8.1</td>
</tr>
<tr>
<td>PCU</td>
<td>16.9</td>
</tr>
<tr>
<td>OVERSPEED GOVERNOR</td>
<td>8.9</td>
</tr>
<tr>
<td>BRUSH BLOCK BRACKET</td>
<td>3.7</td>
</tr>
<tr>
<td>AUX PUMP UNIT</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Notes

1. Power plant shipping crate dimensions are 46 in. W x 108 in. L x 54 in. (+ 7 in. Pallet=61 in.) H.

2. Assembly wheel weighs 248.48 lb per side (124.24 lb each).

3. Brake carbon weighs 138.4 lb per side (69.2 lb each set).

GENERAL AIRPLANE CHARACTERISTICS (Sheet 2 of 2)
AIRPORT PLANNING MANUAL

AIRCRAFT DIMENSIONS

Figure 2 – 2
GROUND CLEARANCES – GENERAL ARRANGEMENT

Figure 2 – 3
AIRPORT PLANNING MANUAL

MAXIMUM GROUND CLEARANCE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HEIGHT</th>
<th>FEET</th>
<th>METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOP OF FUSELAGE</td>
<td>11.29</td>
<td>3.44</td>
</tr>
<tr>
<td>B</td>
<td>FLIGHT DECK</td>
<td>5.36</td>
<td>1.63</td>
</tr>
<tr>
<td>C</td>
<td>CABIN FLOOR</td>
<td>4.45</td>
<td>1.36</td>
</tr>
<tr>
<td>D</td>
<td>SILL OF AIRSTAIR DOOR</td>
<td>4.39</td>
<td>1.34</td>
</tr>
<tr>
<td>E</td>
<td>FUSELAGE GROUND CLEARANCE</td>
<td>2.86</td>
<td>0.87</td>
</tr>
<tr>
<td>F</td>
<td>SILL OF TYPE II/III EXIT</td>
<td>4.59</td>
<td>1.40</td>
</tr>
<tr>
<td>G</td>
<td>SILL OF AFT BAGGAGE DOOR</td>
<td>5.16</td>
<td>1.57</td>
</tr>
<tr>
<td>H</td>
<td>NACELLE LOWER SURFACE</td>
<td>7.10</td>
<td>2.16</td>
</tr>
<tr>
<td>J</td>
<td>VERTICAL STABILIZER</td>
<td>27.23</td>
<td>8.30</td>
</tr>
<tr>
<td>K</td>
<td>HORIZONTAL STABILIZER</td>
<td>25.95</td>
<td>7.91</td>
</tr>
<tr>
<td>L</td>
<td>WING TIP</td>
<td>13.11</td>
<td>4.00</td>
</tr>
<tr>
<td>M</td>
<td>PROP GROUND CLEARANCE</td>
<td>3.65</td>
<td>1.11</td>
</tr>
<tr>
<td>N</td>
<td>PROP HEIGHT CLEARANCE</td>
<td>17.14</td>
<td>5.22</td>
</tr>
<tr>
<td>P</td>
<td>SILL OF FWD BAGGAGE DOOR/FORWARD RH TYPE I EXIT DOOR</td>
<td>4.51</td>
<td>1.37</td>
</tr>
<tr>
<td>Q</td>
<td>SILL OF SERVICE DOOR/TYPE I EXIT</td>
<td>5.32</td>
<td>1.62</td>
</tr>
<tr>
<td>R</td>
<td>SILL OF AFT PAX DOOR TYPE I EXIT</td>
<td>5.20</td>
<td>1.58</td>
</tr>
</tbody>
</table>

MAXIMUM GROUND CLEARANCE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HEIGHT</th>
<th>FEET</th>
<th>METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOP OF FUSELAGE</td>
<td>11.47</td>
<td>3.49</td>
</tr>
<tr>
<td>B</td>
<td>FLIGHT DECK</td>
<td>5.58</td>
<td>1.70</td>
</tr>
<tr>
<td>C</td>
<td>CABIN FLOOR</td>
<td>4.64</td>
<td>1.41</td>
</tr>
<tr>
<td>D</td>
<td>SILL OF AIRSTAIR DOOR</td>
<td>4.55</td>
<td>1.39</td>
</tr>
<tr>
<td>E</td>
<td>FUSELAGE GROUND CLEARANCE</td>
<td>3.05</td>
<td>0.93</td>
</tr>
<tr>
<td>F</td>
<td>SILL OF TYPE II/III EXIT</td>
<td>4.73</td>
<td>1.44</td>
</tr>
<tr>
<td>G</td>
<td>SILL OF AFT BAGGAGE DOOR</td>
<td>5.01</td>
<td>1.53</td>
</tr>
<tr>
<td>H</td>
<td>NACELLE LOWER SURFACE</td>
<td>7.14</td>
<td>2.18</td>
</tr>
<tr>
<td>J</td>
<td>VERTICAL STABILIZER</td>
<td>26.92</td>
<td>8.21</td>
</tr>
<tr>
<td>K</td>
<td>HORIZONTAL STABILIZER</td>
<td>25.67</td>
<td>7.83</td>
</tr>
<tr>
<td>L</td>
<td>WING TIP</td>
<td>13.11</td>
<td>3.99</td>
</tr>
<tr>
<td>M</td>
<td>PROP GROUND CLEARANCE</td>
<td>3.71</td>
<td>1.13</td>
</tr>
<tr>
<td>N</td>
<td>PROP HEIGHT CLEARANCE</td>
<td>17.19</td>
<td>5.24</td>
</tr>
<tr>
<td>P</td>
<td>SILL OF FWD BAGGAGE DOOR/FORWARD RH TYPE I EXIT DOOR</td>
<td>4.67</td>
<td>1.42</td>
</tr>
<tr>
<td>Q</td>
<td>SILL OF SERVICE DOOR/TYPE I EXIT</td>
<td>5.20</td>
<td>1.58</td>
</tr>
<tr>
<td>R</td>
<td>SILL OF AFT PAX DOOR TYPE I EXIT</td>
<td>5.08</td>
<td>1.55</td>
</tr>
</tbody>
</table>

NOTES

1. Nose Wheel Tires 22 x 6.5 – 10, inflated to 89 psi (614 kPa) loaded.
2. Main Wheel Tires are 32 x 8.8 – 16, inflated to 227 psi (1565 kPa) loaded.
3. Tire pressures shown are for calculation purposes only. Refer to AMM Ch. 12 for service pressures.

Type II/III emergency exit door is de-activated for the extra capacity configuration.

Forward type I emergency exit door is installed only on aircraft with extra capacity configuration.

MAXIMUM GROUND CLEARANCES–STANDARD MLG TIRES

Figure 2 – 4
MINIMUM GROUND CLEARANCE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HEIGHT</th>
<th>FEET</th>
<th>METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOP OF FUSELAGE</td>
<td>10.94</td>
<td>3.33</td>
</tr>
<tr>
<td>B</td>
<td>FLIGHT DECK</td>
<td>4.97</td>
<td>1.52</td>
</tr>
<tr>
<td>C</td>
<td>CABIN FLOOR</td>
<td>4.07</td>
<td>1.24</td>
</tr>
<tr>
<td>D</td>
<td>SILL OF AIRSTAIR DOOR</td>
<td>4.02</td>
<td>1.22</td>
</tr>
<tr>
<td>E</td>
<td>FUSELAGE GROUND CLEARANCE</td>
<td>2.48</td>
<td>0.76</td>
</tr>
<tr>
<td>F</td>
<td>SILL OF TYPE II/III EXIT</td>
<td>4.24</td>
<td>1.29</td>
</tr>
<tr>
<td>G</td>
<td>SILL OF AFT BAGGAGE DOOR</td>
<td>4.95</td>
<td>1.51</td>
</tr>
<tr>
<td>H</td>
<td>NACELLE LOWER SURFACE</td>
<td>6.79</td>
<td>2.07</td>
</tr>
<tr>
<td>J</td>
<td>VERTICAL STABILIZER</td>
<td>27.09</td>
<td>8.26</td>
</tr>
<tr>
<td>K</td>
<td>HORIZONTAL STABILIZER</td>
<td>25.79</td>
<td>7.86</td>
</tr>
<tr>
<td>L</td>
<td>WING TIP</td>
<td>12.82</td>
<td>3.91</td>
</tr>
<tr>
<td>M</td>
<td>PROP GROUND CLEARANCE</td>
<td>3.34</td>
<td>1.02</td>
</tr>
<tr>
<td>N</td>
<td>PROP HEIGHT CLEARANCE</td>
<td>16.82</td>
<td>5.13</td>
</tr>
<tr>
<td>P</td>
<td>SILL OF FWD BAGGAGE DOOR/ FORWARD RH TYPE I EXIT DOOR</td>
<td>4.14</td>
<td>1.26</td>
</tr>
<tr>
<td>Q</td>
<td>SILL OF SERVICE DOOR/TYP E I EXIT</td>
<td>5.09</td>
<td>1.55</td>
</tr>
<tr>
<td>R</td>
<td>SILL OF AFT PAX DOOR TYPE I EXIT</td>
<td>4.97</td>
<td>1.52</td>
</tr>
</tbody>
</table>

MINIMUM GROUND CLEARANCE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HEIGHT</th>
<th>FEET</th>
<th>METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOP OF FUSELAGE</td>
<td>11.18</td>
<td>3.41</td>
</tr>
<tr>
<td>B</td>
<td>FLIGHT DECK</td>
<td>5.27</td>
<td>1.61</td>
</tr>
<tr>
<td>C</td>
<td>CABIN FLOOR</td>
<td>4.33</td>
<td>1.32</td>
</tr>
<tr>
<td>D</td>
<td>SILL OF AIRSTAIR DOOR</td>
<td>4.25</td>
<td>1.29</td>
</tr>
<tr>
<td>E</td>
<td>FUSELAGE GROUND CLEARANCE</td>
<td>2.75</td>
<td>0.84</td>
</tr>
<tr>
<td>F</td>
<td>SILL OF TYPE II/III EXIT</td>
<td>4.43</td>
<td>1.35</td>
</tr>
<tr>
<td>G</td>
<td>SILL OF AFT BAGGAGE DOOR</td>
<td>4.75</td>
<td>1.45</td>
</tr>
<tr>
<td>H</td>
<td>NACELLE LOWER SURFACE</td>
<td>6.86</td>
<td>2.09</td>
</tr>
<tr>
<td>J</td>
<td>VERTICAL STABILIZER</td>
<td>26.69</td>
<td>8.14</td>
</tr>
<tr>
<td>K</td>
<td>HORIZONTAL STABILIZER</td>
<td>24.94</td>
<td>7.60</td>
</tr>
<tr>
<td>L</td>
<td>WING TIP</td>
<td>12.86</td>
<td>3.92</td>
</tr>
<tr>
<td>M</td>
<td>PROP GROUND CLEARANCE</td>
<td>3.42</td>
<td>1.04</td>
</tr>
<tr>
<td>N</td>
<td>PROP HEIGHT CLEARANCE</td>
<td>16.91</td>
<td>5.15</td>
</tr>
<tr>
<td>P</td>
<td>SILL OF FWD BAGGAGE DOOR/ FORWARD RH TYPE I EXIT DOOR</td>
<td>4.37</td>
<td>1.33</td>
</tr>
<tr>
<td>Q</td>
<td>SILL OF SERVICE DOOR/TYP E I EXIT</td>
<td>4.94</td>
<td>1.51</td>
</tr>
<tr>
<td>R</td>
<td>SILL OF AFT PAX DOOR TYPE I EXIT</td>
<td>4.82</td>
<td>1.47</td>
</tr>
</tbody>
</table>

NOTES

1. Nose Wheel Tires 22 x 6.5 – 10, inflated to 89 psi (614 kPa) loaded.
2. Main Wheel Tires are 32 x 8.8 –16, inflated to 227 psi (1565 kPa) loaded.
3. Tire pressures shown are for calculation purposes only. Refer to AMM Ch. 12 for service pressures.

\(\text{Type II/III emergency exit door is de-activated for the extra capacity configuration.}\)

\(\text{Forward type I emergency exit door is installed only on aircraft with extra capacity configuration.}\)

MINIMUM GROUND CLEARANCES–STANDARD MLG TIRES

Figure 2 – 5
AIRPORT PLANNING MANUAL

MAXIMUM GROUND CLEARANCE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HEIGHT</th>
<th>WEIGHT: 35,387 lb (16,085 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOP OF FUSELAGE</td>
<td>11.31 ft (3.45 m)</td>
</tr>
<tr>
<td>B</td>
<td>FLIGHT DECK</td>
<td>5.36 ft (1.63 m)</td>
</tr>
<tr>
<td>C</td>
<td>CABIN FLOOR</td>
<td>4.47 ft (1.36 m)</td>
</tr>
<tr>
<td>D</td>
<td>SILL OF AIRSTAIR DOOR</td>
<td>4.41 ft (1.34 m)</td>
</tr>
<tr>
<td>E</td>
<td>FUSELAGE GROUND CLEARANCE</td>
<td>2.87 ft (0.87 m)</td>
</tr>
<tr>
<td>F</td>
<td>SILL OF TYPE II/III EXIT</td>
<td>4.63 ft (1.41 m)</td>
</tr>
<tr>
<td>G</td>
<td>SILL OF AFT BAGGAGE DOOR</td>
<td>5.35 ft (1.63 m)</td>
</tr>
<tr>
<td>H</td>
<td>NACELLE LOWER SURFACE</td>
<td>7.18 ft (2.19 m)</td>
</tr>
<tr>
<td>J</td>
<td>VERTICAL STABILIZER</td>
<td>27.49 ft (8.38 m)</td>
</tr>
<tr>
<td>K</td>
<td>HORIZONTAL STABILIZER</td>
<td>26.19 ft (7.98 m)</td>
</tr>
<tr>
<td>L</td>
<td>WING TIP</td>
<td>13.22 ft (4.03 m)</td>
</tr>
<tr>
<td>M</td>
<td>PROP GROUND CLEARANCE</td>
<td>3.74 ft (1.14 m)</td>
</tr>
<tr>
<td>N</td>
<td>PROP HEIGHT CLEARANCE</td>
<td>17.22 ft (5.25 m)</td>
</tr>
<tr>
<td>P</td>
<td>SILL OF FWD BAGGAGE DOOR/ FORWARD RH TYPE I EXIT DOOR</td>
<td>4.53 ft (1.38 m)</td>
</tr>
<tr>
<td>Q</td>
<td>SILL OF SERVICE DOOR/TYPE I EXIT</td>
<td>5.49 ft (1.67 m)</td>
</tr>
<tr>
<td>R</td>
<td>SILL OF AFT PAX DOOR TYPE I EXIT</td>
<td>5.37 ft (1.64 m)</td>
</tr>
</tbody>
</table>

MAXIMUM GROUND CLEARANCE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HEIGHT</th>
<th>WEIGHT: 35,387 lb (16,085 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOP OF FUSELAGE</td>
<td>11.49 ft (3.50 m)</td>
</tr>
<tr>
<td>B</td>
<td>FLIGHT DECK</td>
<td>5.58 ft (1.70 m)</td>
</tr>
<tr>
<td>C</td>
<td>CABIN FLOOR</td>
<td>4.65 ft (1.42 m)</td>
</tr>
<tr>
<td>D</td>
<td>SILL OF AIRSTAIR DOOR</td>
<td>4.58 ft (1.39 m)</td>
</tr>
<tr>
<td>E</td>
<td>FUSELAGE GROUND CLEARANCE</td>
<td>3.07 ft (0.94 m)</td>
</tr>
<tr>
<td>F</td>
<td>SILL OF TYPE II/III EXIT</td>
<td>4.77 ft (1.45 m)</td>
</tr>
<tr>
<td>G</td>
<td>SILL OF AFT BAGGAGE DOOR</td>
<td>5.20 ft (1.58 m)</td>
</tr>
<tr>
<td>H</td>
<td>NACELLE LOWER SURFACE</td>
<td>7.23 ft (2.20 m)</td>
</tr>
<tr>
<td>J</td>
<td>VERTICAL STABILIZER</td>
<td>27.18 ft (8.28 m)</td>
</tr>
<tr>
<td>K</td>
<td>HORIZONTAL STABILIZER</td>
<td>25.92 ft (7.90 m)</td>
</tr>
<tr>
<td>L</td>
<td>WING TIP</td>
<td>13.22 ft (4.03 m)</td>
</tr>
<tr>
<td>M</td>
<td>PROP GROUND CLEARANCE</td>
<td>3.79 ft (1.15 m)</td>
</tr>
<tr>
<td>N</td>
<td>PROP HEIGHT CLEARANCE</td>
<td>17.28 ft (5.27 m)</td>
</tr>
<tr>
<td>P</td>
<td>SILL OF FWD BAGGAGE DOOR/ FORWARD RH TYPE I EXIT DOOR</td>
<td>4.70 ft (1.43 m)</td>
</tr>
<tr>
<td>Q</td>
<td>SILL OF SERVICE DOOR/TYPE I EXIT</td>
<td>5.37 ft (1.64 m)</td>
</tr>
<tr>
<td>R</td>
<td>SILL OF AFT PAX DOOR TYPE I EXIT</td>
<td>5.25 ft (1.60 m)</td>
</tr>
</tbody>
</table>

NOTES

1. Nose Wheel Tires 22 x 6.5 – 10, inflated to 89 psi (614 kPa) loaded.
2. Main Wheel Tires are 34 x 10.75 –16, inflated to 141 psi (972 kPa) loaded.
3. Tire pressures shown are for calculation purposes only. Refer to AMM Ch. 12 for service pressures.

Figure 2 – 6

Series: 400

CHAPTER 2 Dec 05/2014
Minimum Ground Clearances

Optional MLG Tires

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HEIGHT</th>
<th>FEET</th>
<th>METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOP OF FUSELAGE</td>
<td>10.93</td>
<td>3.33</td>
</tr>
<tr>
<td>B</td>
<td>FLIGHT DECK</td>
<td>4.97</td>
<td>1.52</td>
</tr>
<tr>
<td>C</td>
<td>CABIN FLOOR</td>
<td>4.08</td>
<td>1.24</td>
</tr>
<tr>
<td>D</td>
<td>SILL OF AIRSTAIR DOOR</td>
<td>4.04</td>
<td>1.23</td>
</tr>
<tr>
<td>E</td>
<td>FUSELAGE GROUND CLEARANCE</td>
<td>2.49</td>
<td>0.76</td>
</tr>
<tr>
<td>F</td>
<td>SILL OF TYPE II/III EXIT</td>
<td>4.27</td>
<td>1.30</td>
</tr>
<tr>
<td>G</td>
<td>SILL OF AFT BAGGAGE DOOR</td>
<td>5.10</td>
<td>1.55</td>
</tr>
<tr>
<td>H</td>
<td>NACELLE LOWER SURFACE</td>
<td>6.86</td>
<td>2.09</td>
</tr>
<tr>
<td>J</td>
<td>VERTICAL STABILIZER</td>
<td>27.31</td>
<td>8.33</td>
</tr>
<tr>
<td>K</td>
<td>HORIZONTAL STABILIZER</td>
<td>25.99</td>
<td>7.92</td>
</tr>
<tr>
<td>L</td>
<td>WING TIP</td>
<td>12.92</td>
<td>3.94</td>
</tr>
<tr>
<td>M</td>
<td>PROP GROUND CLEARANCE</td>
<td>3.41</td>
<td>1.04</td>
</tr>
<tr>
<td>N</td>
<td>PROP HEIGHT CLEARANCE</td>
<td>16.89</td>
<td>5.15</td>
</tr>
<tr>
<td>P</td>
<td>SILL OF FWD BAGGAGE DOOR/</td>
<td>4.16</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>FORWARD RH TYPE I EXIT DOOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>SILL OF SERVICE DOOR/TYPE I EXIT</td>
<td>5.23</td>
<td>1.59</td>
</tr>
<tr>
<td>R</td>
<td>SILL OF AFT PAX DOOR TYPE I EXIT</td>
<td>5.11</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Minimum Ground Clearances

<table>
<thead>
<tr>
<th>ITEM</th>
<th>HEIGHT</th>
<th>FEET</th>
<th>METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOP OF FUSELAGE</td>
<td>11.20</td>
<td>3.41</td>
</tr>
<tr>
<td>B</td>
<td>FLIGHT DECK</td>
<td>5.27</td>
<td>1.61</td>
</tr>
<tr>
<td>C</td>
<td>CABIN FLOOR</td>
<td>4.34</td>
<td>1.32</td>
</tr>
<tr>
<td>D</td>
<td>SILL OF AIRSTAIR DOOR</td>
<td>4.27</td>
<td>1.30</td>
</tr>
<tr>
<td>E</td>
<td>FUSELAGE GROUND CLEARANCE</td>
<td>2.85</td>
<td>0.87</td>
</tr>
<tr>
<td>F</td>
<td>SILL OF TYPE II/III EXIT</td>
<td>4.46</td>
<td>1.36</td>
</tr>
<tr>
<td>G</td>
<td>SILL OF AFT BAGGAGE DOOR</td>
<td>4.91</td>
<td>1.50</td>
</tr>
<tr>
<td>H</td>
<td>NACELLE LOWER SURFACE</td>
<td>6.97</td>
<td>2.13</td>
</tr>
<tr>
<td>J</td>
<td>VERTICAL STABILIZER</td>
<td>26.90</td>
<td>8.20</td>
</tr>
<tr>
<td>K</td>
<td>HORIZONTAL STABILIZER</td>
<td>25.64</td>
<td>7.82</td>
</tr>
<tr>
<td>L</td>
<td>WING TIP</td>
<td>12.92</td>
<td>3.94</td>
</tr>
<tr>
<td>M</td>
<td>PROP GROUND CLEARANCE</td>
<td>3.49</td>
<td>1.06</td>
</tr>
<tr>
<td>N</td>
<td>PROP HEIGHT CLEARANCE</td>
<td>16.97</td>
<td>5.17</td>
</tr>
<tr>
<td>P</td>
<td>SILL OF FWD BAGGAGE DOOR/</td>
<td>4.39</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>FORWARD RH TYPE I EXIT DOOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>SILL OF SERVICE DOOR/TYPE I EXIT</td>
<td>5.08</td>
<td>1.55</td>
</tr>
<tr>
<td>R</td>
<td>SILL OF AFT PAX DOOR TYPE I EXIT</td>
<td>4.96</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Notes

1. Nose Wheel Tires 22 x 6.5 – 10, inflated to 89 psi (614 kPa) loaded.
2. Main Wheel Tires are 34 x 10.75 –16, inflated to 141 psi (972 kPa) loaded.
3. Tire pressures shown are for calculation purposes only. Refer to AMM Ch. 12 for service pressures.

- Type II/III emergency exit door is deactivated for the extra capacity configuration.
- Forward type I emergency exit door is installed only on aircraft with extra capacity configuration.

MINIMUM GROUND CLEARANCES–OPTIONAL MLG TIRES

Figure 2 – 7
PASSENGER CABIN LENGTH
61 ft 8 in. (18.80 m)

AIRSTAIR/TYPE I EXIT
30.00 in. W x 65.00 in. H
(76.20 cm x 1.65 m)

TYPE II/III EXIT
20.20 in. W x 56.00 in. H
(51.31 cm x 1.42 m)

SERVICE DOOR/TYOE I EXIT
24.00 in. W x 54.00 in. H
(60.96 cm x 1.37 m)

baggage door
24.00 in. W x 54.00 in. H
(60.96 cm x 1.37 m)

5 ft 9 in.
(1.75 m)

PAX DOOR/TYOE I EXIT
24.00 in. W x 65.00 in. H
(60.96 cm x 1.65 m)

BAGGAGE DOOR
24.00 in. W x 54.00 in. H
(60.96 cm x 1.37 m)

BAGGAGE DOOR
51.00 in. W x 59.00 in. H
(1.30 m x 1.50 m)

NOTE
Standard configuration shown.
Layout may vary with optional configurations.

LEGEND
1. Forward baggage compartment
 91.00 ft³ (2.58 m³).
2. Rear baggage compartment
 411.00 ft³ (11.64 m³).
3. Lavatory.
4. Wardrobe.
5. Flight attendant.
SERIES 400 (TYPE SPECIFICATION MODEL 401) INTERIOR CONFIGURATION

70 SEATS AT 33 INCH (83.82 cm) PITCH

NOTE
Standard configuration shown. Layout may vary with optional configurations.

SERIES 400 STANDARD INTERIOR CONFIGURATIONS (Sheet 2 of 2)

LEGEND
1. Forward baggage compartment 91.00 ft³ (2.58 m³).
2. Rear baggage compartment 411.00 ft³ (11.64 m³).
3. Lavatory.
4. Wardrobe.
5. Flight attendant.
SERIES 400 (MODEL 402) STANDARD INTERIOR CONFIGURATION

74 SEATS AT 31 INCH PITCH (78.74 cm)

NOTE
Standard configuration shown. Layout may vary with optional configurations.

AIRSTAIR/TYPEx I EXIT
30.00 in. W x 65.00 in. H
(76.20 cm x 1.65 m)

TYPE II/III EXIT
20.20 in. W x 56.00 in. H
(51.31 cm x 1.42 m)

SERVICE DOOR/TYPEx I EXIT
24.00 in. W x 54.00 in. H
(60.96 cm x 1.37 m)

BAGGAGE DOOR
24.00 in. W x 54.00 in. H
(60.96 cm x 1.37 m)

NOTE
51.00 in. W x 59.00 in. H
(1.30 m x 1.50 m)

LEGEND
1. Forward baggage compartment 91.00 ft³ (2.58 m³).
2. Rear baggage compartment 411.00 ft³ (11.64 m³).
3. Lavatory.
4. Wardrobe.
5. Flight attendant.

Figure 2 − 9
PASSENGER CABIN LENGTH
61 ft 8 in. (18.80 m)

NOTE
Layout may vary with optional configurations.

SERIES 400 (MODEL 402) INTERIOR CONFIGURATION
78 SEATS AT 30 INCH (76.2 cm) PITCH

SERIES 400 OPTIONAL INTERIOR CONFIGURATIONS (Sheet 1 of 5)

BAGGAGE DOOR
24.00 in. W x 54.00 in. H (60.96 cm x 1.37 m)

FORWARD PASSENGER AIRSTAIR DOOR
30.00 in. W x 65.00 in. H (76.20 cm x 1.65 m)

PAX DOOR/TYPE I EXIT
24.00 in. W x 65.00 in. H (60.96 cm x 1.65 m)

TYPE II/III EXIT
20.20 in. W x 56.00 in. H (51.31 cm x 1.42 m)

SERVICE DOOR/TYPE I EXIT
24.00 in. W x 54.00 in. H (60.96 cm x 1.37 m)

BAGGAGE DOOR
51.00 in. W x 59.00 in. H (1.30 m x 1.50 m)

LEGEND
1. Forward baggage compartment
 91.00 ft3 (2.58 m3).
2. Rear baggage compartment
 365.00 ft3 (10.33 m3).
3. Lavatory.
4. Wardrobe.
5. Flight attendant.

Figure 2 – 10
Series: 400
CHAPTER 2
Page 14
Dec 05/2014
SERIES 400 (MODEL 402) INTERIOR CONFIGURATION
72 SEATS AT 32 INCH (81.28 cm) PITCH

LEGEND
1. Forward Baggage Compartment
 51.00 in. W x 59.00 in. H
 (1.30 m x 1.50 m)
2. Rear baggage compartment
 365.00 ft² (10.33 m²).
3. Lavatory.
4. Wardrobe.
5. Flight attendant Seat.
7. Cart storage.

NOTE
Layout may vary with optional configurations.
Series: 400

CHAPTER 2

Page 16

SERIES 400 OPTIONAL INTERIOR CONFIGURATIONS (Sheet 3 of 5)

Figure 2 – 10
SERIES 400 (MODEL 402) THREE-ABREAST TRIPLE CLASS INTERIOR CONFIGURATION
7 SEATS AT 36 in. (91.44 cm) PITCH, 10 SEATS AT 34 in. (86.36 cm) PITCH AND 54 SEATS AT 30 in. (76.20 cm) PITCH

LEGEND
1. Forward baggage compartment 91.00 ft3 (2.58 m3).
2. Rear baggage compartment 365.00 ft3 (10.33 m3).
3. Lavatory.
4. Wardrobe.
5. Flight attendant.

NOTE
Layout may vary with optional configuration.
SERIES 400 (MODEL 402) EXTRA CAPACITY INTERIOR CONFIGURATION
86 SEATS AT 29 INCH (73.66 cm) PITCH

NOTE
Layout may vary with optional configurations.

LEGEND
1. Rear baggage compartment
 365.00 ft³ (10.33 m³).
2. Lavatory.
3. Wardrobe.
5. Galley.
NOTE

This dimension is approximate and will vary with aircraft configuration and loading conditions.

GROUND REFERENCE LINE

OVERHEAD STOWAGE BINS
(CAPACITY IS 1.67 ft³ (0.047 m³)/PAX.)
OVERHEAD STOWAGE BINS
(CAPACITY IS 1.75 ft³ (0.049 m³)/PAX.)

GROUND REFERENCE LINE

106.0 in.
(2.69 m)

24.1 in.
(0.61 m)

11.1 in.
(0.28 m)

81.9 in.
(2.08 m)

56.3 in.
(1.43 m)

16.0 in.
(0.41 m)

20.4 in.
(0.52 m)

97.9 in.
(2.49 m)

76.1 in.
(1.93 m)

24.5 in.
(0.62 m)

1.00 in.
(0.28 m)

71.8 in.
(1.82 m)

101.1 in.
(2.56 m)

108.8 in.
(2.76 m)

24.5 in.
(0.62 m)

97.9 in.
(2.49 m)

11.1 in.
(0.28 m)

24.5 in.
(0.62 m)

11.1 in.
(0.28 m)

81.9 in.
(2.08 m)

11.37 in.
(28.9 cm)

PASSENGER COMPARTMENT
(NEXT GEN)

NOTE
⚠️ This dimension is approximate and will vary with aircraft configuration and loading conditions.

PASSENGER COMPARTMENT CROSS SECTION (Sheet 2 of 2)

Figure 2 – 11
Floor panels that can support a maximum floor loading of 37.5 lb/ft² (183 kg/m²).

Floor panels that can support a maximum floor loading of 75.0 lb/ft² (366 kg/m²).

Floor panels that can support a maximum floor loading of 125.0 lb/ft² (610 kg/m²).

Figure 2 – 12

FLOOR LOADING DIAGRAM (Sheet 1 of 2)
Floor panels that can support a maximum floor loading of 37.5 lb/ft² (183 kg/m²).

Floor panels that can support a maximum floor loading of 75.0 lb/ft² (366 kg/m²).

Floor panels that can support a maximum floor loading of 125.0 lb/ft² (610 kg/m²).

FLOOR LOADING DIAGRAM (Sheet 2 of 2)
NOTES
1. The dimensions shown are measured at floor level.
2. Forward baggage compartment and forward baggage door is removed for the extra capacity configuration.
3. Type I emergency exit door is installed in forward RH side for the extra capacity configuration.

VIEW LOOKING DOWN
FWD BAGGAGE – COMPARTMENT DIMENSIONS (STANDARD INTERIOR CONFIGURATION)

Figure 2 – 13
NOTE
The dimensions shown are measured at floor level.

48.43 in. (1.23 m)
X834.54

51.44 in. (1.31 m)

78.41 in. (1.99 m)
X783.10

50.15 in. (1.27 m)

80.05 in. (2.03 m)

76.34 in. (1.94 m)
X703.05

AFT BAGGAGE COMPARTMENT DIMENSIONS (STANDARD INTERIOR CONFIGURATION)

Figure 2 – 14
NOTE
The dimensions shown are measured at floor level.

AFT BAGGAGE COMPARTMENT DIMENSIONS (OPTIONAL INTERIOR CONFIGURATION)

Figure 2 – 15
Figure 2 − 16

NETS AND TIE−DOWNS (DETAIL SPEC. CONFIGURATION)

FORWARD−FLOOR TIE−DOWN RINGS (4)
2000 lb (907 kg)

SIDEWALL (AND AFT BULKHEAD) TIE−DOWN RINGS (12)
2000 lb (907 kg)
FORWARD–FLOOR TIE–DOWN RINGS (4)
2000 lb (907 kg)

VIEW LOOKING AFT (NETS AND POLES OMITTED FOR CLARITY)
NETS AND TIE–DOWN S (G3 GALLEY)

SIDEWALL (AND AFT BULKHEAD) TIE–DOWN RINGS (11)
2000 lb (907 kg)
Door Clearances

1. **General**
 The door clearance sheets provide the door size and location of the passenger, service and baggage compartment doors.

2. The forward passenger (airstair) door opens outwards and downwards and is manually controlled from inside or outside the aircraft.

3. The aft passenger door/Type 1 exit opens inward and upwards, then moves outward and forward.

4. The aft service door/Type 1 exit opens inwards and upwards, then moves outwards and forward.

5. The forward baggage−compartment door opens inward and upward, then moves outwards and forward.

6. The aft baggage−compartment door opens outwards and upwards.
NOTE

1 Refer to Ground Clearance illustrations.

2 Dimensions are approximate and will vary with aircraft configuration and loading conditions.

FORWARD PASSENGER – DOOR CLEARANCES

Figure 2 – 18
NOTE

Refer to Ground Clearance illustrations.

AFT PASSENGER – DOOR CLEARANCES (Sheet 1 of 2)

Figure 2 – 19
AFT PASSENGER DOOR (OPEN POSITION)

CLEAR OPENING

27.90 in. (70.87 cm)

24.55 in. (62.36 cm)

AFT BAGGAGE DOOR (REF)

VIEW LOOKING DOWN ON L/H SIDE

5 ft. 2 in. (1.57 m)

3 ft. 9 in. (1.14 m)

VIEW LOOKING FORWARD

AFT PASSENGER DOOR (OPEN POSITION)

7.73 in. (19.63 cm)

4 ft. 5 in. (1.34 m)

AFT PASSENGER – DOOR CLEARANCES (Sheet 2 of 2)

Figure 2 – 19
NOTE

⚠ Refer to Ground Clearance illustrations.

AFT SERVICE – DOOR CLEARANCES (Sheet 1 of 2)

Figure 2 – 20
AFT SERVICE − DOOR CLEARANCES (Sheet 2 of 2)

Figure 2 – 20
NOTES

1. Refer to Ground Clearance illustrations.

2. Forward baggage compartment and forward baggage door is removed for the extra capacity configuration.

3. Forward type I emergency exit door is installed in lieu of forward baggage compartment door for the extra capacity configuration.

FORWARD BAGGAGE COMPARTMENT/FORWARD TYPE 1 EMERGENCY EXIT – DOOR CLEARANCES (Sheet 1 of 2)
Figure 2 – 21
2. Forward baggage compartment and forward baggage door is removed for the extra capacity configuration.

3. Forward type I emergency exit door is installed in lieu of forward baggage compartment door for the extra capacity configuration.

NOTES

FLOOR LEVEL

- 27.90 in. (70.87 cm)
- 24.55 in. (62.35 cm)

CLEAR OPENING

VIEW LOOKING DOWN ON R/H SIDE

- 16.41 in. (41.68 cm)
- 1.21 in. (30.73 mm)

VIEW LOOKING FORWARD

- 5 ft. 2 in. (1.58 m)
- 4 ft. 6 in. (1.37 m)
- 4 ft. 5 in. (1.34 m)

FORWARD BAGGAGE COMPARTMENT/FORWARD TYPE 1 EMERGENCY EXIT – DOOR CLEARANCES (Sheet 2 of 2)

Figure 2 – 21
AFT BAGGAGE–COMPARTMENT – DOOR CLEARANCES (Sheet 1 of 2)

Figure 2 – 22
NOTE

Refer to Ground Clearance illustrations.

AFT BAGGAGE–COMPARTMENT – DOOR CLEARANCES (Sheet 2 of 2)

Figure 2 – 22
Warning

Keep clear of door pull handle out and down to open support door while lowering.

Exterior of Fwd Passenger Door

- **A**
 - Push
 - Door lowering assist

Exterior of Aft Passenger Door

- **B**
 - Pull handle and turn to open

Exterior of Aft Baggage Door

- **C**
 - Pull handle and turn to open
 - Pull handle and turn to open
 - Push to release
 - Handle in open position
 - Stow strut before closing baggage door

Figure 2 – 23

Chapter 2

Dec 05/2014
Type II/III emergency exit door is deactivated for the extra capacity configuration.

Forward type I emergency exit door is installed only on aircraft with extra capacity configuration.
NOTES

1. Right side of aircraft is shown, left side is identical.

2. Drain mast on left side of each nacelle (viewed from behind the aircraft) protrudes approx. 4 in. (10.2 cm).

3. The minimum clearance between the nacelle (aft MLG doors) and the fuselage is 96 in. (2.44 m). Right side of the aircraft is shown, left side is identical.

4. Aft MLG doors protrude approx. 6 in. (15.2 cm) from both sides of the nacelles.

MINIMUM CLEARANCE BETWEEN NACELLES AND FUSELAGE

Figure 2 – 24
AFT BAGGAGE COMPARTMENT VERTICAL DIMENSIONS (TYPICAL CONFIGURATION)

Figure 2 – 25
<table>
<thead>
<tr>
<th>ITEM</th>
<th>HEIGHT</th>
<th>FEET (ft)</th>
<th>METERS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>VERTICAL STABILIZER (OFF JACKS)</td>
<td>26.7 – 27.2</td>
<td>8.13 – 8.30</td>
</tr>
<tr>
<td>JJ</td>
<td>VERTICAL STABILIZER (ON JACKS)</td>
<td>27.2</td>
<td>8.30</td>
</tr>
<tr>
<td>K</td>
<td>HORIZONTAL STABILIZER (OFF JACKS)</td>
<td>25 – 26</td>
<td>7.62 – 7.92</td>
</tr>
<tr>
<td>KK</td>
<td>HORIZONTAL STABILIZER (ON JACKS)</td>
<td>26.7</td>
<td>8.13</td>
</tr>
<tr>
<td>A</td>
<td>TAIL (OFF JACKS)</td>
<td>11.8</td>
<td>3.60</td>
</tr>
<tr>
<td>AA</td>
<td>TAIL (ON JACKS)</td>
<td>13 – 13.9</td>
<td>3.96 – 4.24</td>
</tr>
<tr>
<td>G</td>
<td>SILL OF AFT BAGGAGE DOOR (OFF JACKS)</td>
<td>5.06</td>
<td>1.54</td>
</tr>
<tr>
<td>GG</td>
<td>SILL OF AFT BAGGAGE DOOR (ON JACKS)</td>
<td>5.7</td>
<td>1.74</td>
</tr>
</tbody>
</table>

NOTES

1. K and KK values are through C/L of horizontal stabilizer.
2. Dimensions are approximate and will vary with aircraft configuration and loading conditions.

AIRCRAFT DIMENSIONS (Sheet 1 of 3)
<table>
<thead>
<tr>
<th>ITEM</th>
<th>FEET (ft)</th>
<th>METERS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.83</td>
<td>3.00</td>
</tr>
<tr>
<td>AA</td>
<td>10.67</td>
<td>3.25</td>
</tr>
<tr>
<td>B</td>
<td>11.17</td>
<td>3.40</td>
</tr>
<tr>
<td>BB</td>
<td>12.42</td>
<td>3.79</td>
</tr>
<tr>
<td>BBB</td>
<td>13.25</td>
<td>4.04</td>
</tr>
</tbody>
</table>

AIRCRAFT EMPENNAGE – PLATFORM WORKING HEIGHTS

NOTE
Dimensions are approximate and will vary with A/C configuration and loading conditions.

AIRCRAFT DIMENSIONS (Sheet 2 of 3)

Figure 2 – 26
EMERGENCY EXIT LOCATIONS AND ELEVATIONS

AIRCRAFT DIMENSIONS (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>FEET (ft)</th>
<th>METERS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25.67</td>
<td>7.82</td>
</tr>
<tr>
<td>B</td>
<td>12.83</td>
<td>3.91</td>
</tr>
<tr>
<td>C</td>
<td>3.22</td>
<td>0.98</td>
</tr>
<tr>
<td>D</td>
<td>3.61</td>
<td>1.10</td>
</tr>
<tr>
<td>E</td>
<td>13.5</td>
<td>4.11</td>
</tr>
<tr>
<td>F</td>
<td>27.33</td>
<td>8.33</td>
</tr>
<tr>
<td>G</td>
<td>5.07</td>
<td>1.55</td>
</tr>
<tr>
<td>H</td>
<td>5.07</td>
<td>1.55</td>
</tr>
<tr>
<td>J</td>
<td>4.08</td>
<td>1.24</td>
</tr>
<tr>
<td>K</td>
<td>3.82</td>
<td>1.16</td>
</tr>
<tr>
<td>L</td>
<td>10.75</td>
<td>3.28</td>
</tr>
</tbody>
</table>

Figure 2 – 26
CHAPTER 3

AIRCRAFT PERFORMANCE
General Information

1. General

This chapter contains the performance data of the Dash-8 Series 400 (Model 402) aircraft as required for airport planning purposes. This data reflects the performance levels of the Dash-8 Series 400, Performance Data (July 1999).

2. The various definitions used in this Chapter are as follows:

A. Maximum Structural Weights

As found in the July 1999 Performance Data, the maximum structural take-off weight is 63,750 lbs (28,916 kg), and the maximum landing weight is 61,250 lbs (27,782 kg).

B. WAT Limits

The maximum permissible take-off weight (refer to Figure 3-2, Figure 3-3 and Figure 3-4) and landing weight (refer to Figure 3-8, Figure 3-9 and Figure 3-10) are based on the climb requirements of FAR 25 (one engine inoperative).

C. Take-off Runway Length

The take-off runway length shown in Figure 3-5, Figure 3-6 and Figure 3-7 is the longest of:

- The accelerate-stop distance
- The take-off distance to 35 feet altitude with one engine inoperative at V1
- 1.15 times the all engine-operating take-off distance to 35 feet altitude.

D. Landing Runway Length

The landing runway length required in Figure 3-14 is the unfactored landing distance (refer to Figure 3-11, Figure 3-12 and Figure 3-13) multiplied by an operational factor of 1.67 (or 1/0.6) or 1.43 (or 1/0.7). The unfactored landing distance is based on an approach speed of 1.3 Vs and a screen height of 50 feet.

E. Retardation Devices

The retardation devices that follow are used:

(1) Accelerate-Stop
 (a) Maximum main-wheel anti-skid braking.
 (b) One propeller in the DISC position, the other one is feathered.
 (c) Roll spoilers are extended.

(2) Landing
(a) Maximum main–wheel anti–skid braking.
(b) One propeller in the DISC position, the other one is feathered.
(c) Roll spoilers are extended.

F. Standard Day Temperatures

The table that follows shows the standard day temperatures that are used in this Chapter.

<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>STANDARD DAY TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEET</td>
<td>METERS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>610</td>
</tr>
<tr>
<td>4000</td>
<td>1220</td>
</tr>
<tr>
<td>6000</td>
<td>1830</td>
</tr>
<tr>
<td>8000</td>
<td>2440</td>
</tr>
<tr>
<td>10,000</td>
<td>3050</td>
</tr>
</tbody>
</table>
Figure 3 - 1

Payload/Range at Maximum Cruise Rating and Long Range Cruise
MAXIMUM PERMISSIBLE TAKE-OFF WEIGHT (WAT LIMIT) − FLAPS 5 DEGREES

Figure 3 – 2
MAXIMUM PERMISSIBLE TAKE-OFF WEIGHT (WAT LIMIT) – FLAPS 10 DEGREES

Figure 3 – 3
MAXIMUM PERMISSIBLE TAKE-OFF WEIGHT (WAT LIMIT) – FLAPS 15 DEGREES

Figure 3 – 4
TAKE-OFF FIELD LENGTH - FLAP 5°

ASSOCIATED CONDITIONS
1. DRY, HARD, LEVEL RUNWAY SURFACE, ZERO WIND.
2. BOTH ENGINES AT NORMAL TAKEOFF POWER TO VEF,
 THEREAFTER MAX TAKEOFF POWER ON OPERATING ENGINE.
3. RETARDATION IN ACC.STOP: MAXIMUM MAIN WHEEL ANTI-
 SKID BRAKING, PROPELLERS AT DISC,
 BULK SPOILERS EXTENDED.

TAKE-OFF RUNWAY LENGTH REQUIREMENTS - FLAPS 5 DEGREES

Figure 3 - 5

Series: 400

CHAPTER 3

May 28/2001
TAKE-OFF FIELD LENGTH – FLAP 10°

ASSOCIATED CONDITIONS
1. DRY, HARD, LEVEL RUNWAY SURFACE, ZERO WIND.
2. BOTH ENGINES AT NORMAL TAKEOFF POWER TO VEF,
 THEREAFTER MAX TAKEOFF POWER ON OPERATING ENGINE.
3. RETARDATION IN ACC.STOP: MAXIMUM MAIN WHEEL ANTI-
 SKID BRAKING, PROPELLERS AT DISC,
 ROLL SPOILERS EXTENDED.

TAKE-OFF RUNWAY LENGTH REQUIREMENTS – FLAPS 10 DEGREES

Figure 3 – 6
TAKE-OFF FIELD LENGTH - FLAP 15°

ASSOCIATED CONDITIONS

1. DRY, HAND-LEVEL RUNWAY SURFACE, ZERO WIND.
2. BOTH ENGINES AT NORMAL TAKEOFF POWER TO VEF.
 THEREAFTER MAX TAKEOFF POWER ON OPERATING ENGINE.
3. RETARDATION IN ACC.STOP: MAXIMUM MAIN WHEEL ANTI-SKID BRAKING, PROPELLERS AT DISC, NOLL SPOILERS EXTENDED.

TAKE-OFF RUNWAY LENGTH REQUIREMENTS - FLAPS 15 DEGREES

Figure 3 – 7
MAX. LANDING WEIGHT − LANDING FLAPS 10° AND APPROACH FLAPS 5 DEGREES

Figure 3 – 8
MAX. LANDING WEIGHT - LANDING FLAPS 15 AND APPROACH FLAPS 10 DEGREES

Figure 3 - 9

Series: 400

CHAPTER 3

May 28/2001
MAX. LANDING WEIGHT − LANDING FLAPS 35° AND APPROACH FLAPS 15 DEGREES

Figure 3 − 10
UNFACTORED LANDING DISTANCE - FLAPS 10 DEGREES

Figure 3 – 11
UNFACTORED LANDING DISTANCE − FLAPS 15 DEGREES

Figure 3 − 12
UNFACTORED LANDING DISTANCE – FLAPS 35 DEGREES

Figure 3 – 13
LANDING RUNWAY LENGTH REQUIRED

Figure 3 − 14
CHAPTER 4
GROUND MANEUVERING
General Information

1. This Chapter supplies data on the items that follow:
 - Aircraft turning capability (refer to Figure 4−1, Figure 4−2 and Figure 4−3)
 - Visibility from cockpit (Note, this information is not available at this time)
 - Maneuvering characteristics (refer to Figure 4−4, Figure 4−5, Figure 4−6 and Figure 4−7)
 - Mooring data (refer to Figure 4−8).

2. This data has been determined from the theoretical limits imposed by the geometry of the aircraft and includes normal allowance for tire slippage (as indicated). The purpose of this Chapter is to show the turning capability of the aircraft in favorable operating conditions (without the use of reverse thrust or differential braking). Use this data only as a guideline.

3. It is possible that each airline will use more conservative turning procedures to avoid excessive tire wear and possible maintenance problems. The operating techniques of each airline will be different and may be modified because of these physical factors within the maneuvering area:
 - Adverse grades
 - Limited area
 - High risk of jet engine exhaust or propeller slipstream damage.

4. Because of these reasons the airport planner must coordinate the ground maneuvering data with the user airline for airport layout plan.
TURNING CENTER FOR NOSE–GEAR TURNING ANGLE. (TYPICAL)

NOSE–GEAR AXLE PROJECTION–LINE. (TYPICAL)

R–1 (Inner).
R–2 (Outer Gear).
R–3 (Nose Gear).
R–4 (Wing Tip).
R–5 (Nose).
R–6 (Tail).
Dimension “C” Typical. Refer to table for distance of individual points from aircraft center line.

TURNING RADIi (NO SLIP ANGLE)

Figure 4 – 1
<table>
<thead>
<tr>
<th>STEERING ANGLE (DEGREES)</th>
<th>R-1 INNER GEAR</th>
<th>R-2 OUTER GEAR</th>
<th>R-3 NOSE GEAR</th>
<th>R-4 WING TIP</th>
<th>R-5 NOSE</th>
<th>R-6 TAIL</th>
<th>DIMENSION "C"</th>
</tr>
</thead>
<tbody>
<tr>
<td>in. ft</td>
<td>m</td>
<td>ft</td>
<td>m</td>
<td>ft</td>
<td>m</td>
<td>ft</td>
<td>m</td>
</tr>
<tr>
<td>5</td>
<td>6083.87</td>
<td>507.00</td>
<td>154.50</td>
<td>6459.50</td>
<td>538.33</td>
<td>164.10</td>
<td>6306.70</td>
</tr>
<tr>
<td>10</td>
<td>2923.90</td>
<td>243.67</td>
<td>74.27</td>
<td>3299.53</td>
<td>275.00</td>
<td>164.10</td>
<td>3671.29</td>
</tr>
<tr>
<td>15</td>
<td>1659.64</td>
<td>135.00</td>
<td>47.23</td>
<td>2235.26</td>
<td>186.25</td>
<td>56.80</td>
<td>2131.73</td>
</tr>
<tr>
<td>20</td>
<td>1319.17</td>
<td>109.92</td>
<td>33.50</td>
<td>1694.80</td>
<td>141.25</td>
<td>43.05</td>
<td>1616.16</td>
</tr>
<tr>
<td>25</td>
<td>988.09</td>
<td>82.33</td>
<td>25.10</td>
<td>1363.71</td>
<td>113.67</td>
<td>34.60</td>
<td>1310.45</td>
</tr>
<tr>
<td>30</td>
<td>761.53</td>
<td>63.50</td>
<td>19.30</td>
<td>1137.16</td>
<td>94.76</td>
<td>28.90</td>
<td>1109.07</td>
</tr>
<tr>
<td>35</td>
<td>594.53</td>
<td>49.58</td>
<td>15.10</td>
<td>970.15</td>
<td>80.83</td>
<td>24.60</td>
<td>969.26</td>
</tr>
<tr>
<td>40</td>
<td>464.96</td>
<td>38.75</td>
<td>11.80</td>
<td>840.19</td>
<td>70.00</td>
<td>21.30</td>
<td>866.51</td>
</tr>
<tr>
<td>45</td>
<td>359.06</td>
<td>29.92</td>
<td>9.12</td>
<td>734.71</td>
<td>61.25</td>
<td>18.70</td>
<td>788.14</td>
</tr>
<tr>
<td>50</td>
<td>270.52</td>
<td>22.58</td>
<td>6.87</td>
<td>646.14</td>
<td>53.83</td>
<td>16.40</td>
<td>729.72</td>
</tr>
<tr>
<td>55</td>
<td>194.02</td>
<td>16.17</td>
<td>4.93</td>
<td>569.64</td>
<td>47.50</td>
<td>14.50</td>
<td>683.57</td>
</tr>
<tr>
<td>60</td>
<td>126.30</td>
<td>10.50</td>
<td>3.21</td>
<td>501.93</td>
<td>41.83</td>
<td>12.75</td>
<td>647.62</td>
</tr>
<tr>
<td>65</td>
<td>65.06</td>
<td>5.42</td>
<td>1.65</td>
<td>440.68</td>
<td>36.75</td>
<td>11.19</td>
<td>619.70</td>
</tr>
<tr>
<td>70</td>
<td>8.57</td>
<td>0.75</td>
<td>0.22</td>
<td>384.19</td>
<td>32.00</td>
<td>9.75</td>
<td>598.61</td>
</tr>
<tr>
<td>75</td>
<td>-44.48</td>
<td>-3.67</td>
<td>-1.13</td>
<td>331.15</td>
<td>15.87</td>
<td>8.41</td>
<td>583.11</td>
</tr>
<tr>
<td>80</td>
<td>-91.13</td>
<td>-7.92</td>
<td>-2.41</td>
<td>280.49</td>
<td>23.00</td>
<td>4.50</td>
<td>572.60</td>
</tr>
<tr>
<td>85</td>
<td>-144.29</td>
<td>-12.00</td>
<td>-3.67</td>
<td>231.34</td>
<td>19.25</td>
<td>5.88</td>
<td>566.64</td>
</tr>
<tr>
<td>90</td>
<td>-192.14</td>
<td>-16.00</td>
<td>-4.90</td>
<td>182.88</td>
<td>15.25</td>
<td>4.65</td>
<td>565.00</td>
</tr>
</tbody>
</table>

NOTE

The actual operating data will be greater than the values shown because tire slippage is not considered.

The airport planner must consult with the user airline for specific operating procedures.
NOTES
1. Dimensions noted are for dry, hard, level surfaces at these tire pressures: 227 psi (loaded), 32 x 8.8–16 standard main-wheel tires, and 89 psi (loaded) for 22 x 6.50–10 standard nose-wheel tires.
2. Nose gear steering limit is approximately 70° left and right.
3. Slip angle of 2° is approximate only and may vary with aircraft configuration, loading and tire wear.
4. Dimensions given for maneuvering clearance and turning radii are minimum recommended limits.
5. Tire pressures shown are for calculation purposes only. Refer to AMM Ch. 12 for service pressures.

TURNING RADIUS AT MINIMUM POWER

Figure 4 – 3
NOTE
The airport planner must consult with the user airline for specific operating procedures.
NOTE
The airport planner must consult with the user airline for specific operating procedures.

90 DEGREE TURN − RUNWAY TO TAXIWAY WITH NOSE GEAR AND COCKPIT TRACKS

Figure 4 – 5
NOTE
The airport planner must consult with the user airline for specific operating procedures.

8.25 ft (2.51 m) TAXIWAY WIDTH

75 ft (22.86 m) TAXIWAY WIDTH

NOSE GEAR STEERING ANGLE: 20°

90 DEGREE TURN − TAXIWAY TO TAXIWAY WITH NOSE GEAR AND COCKPIT TRACKS

Figure 4 − 6
PORT & STARBOARD

100 ft
(30.48 m)
RADIUS

75 ft
(22.86 m)
TAXIWAY WIDTH

20 ft (6.10 m)
MIN.

38 ft (11.58 m)
MINIMUM
CLEARANCE OF
MOVING AIRCRAFT

23 ft (7.01 m)
MIN.

150 ft
(45.72 m)
RUNWAY WIDTH

HOLDING
APRON

MAIN GEAR
CENTER LINE TRACKS
(PORT & STARBOARD)

Figure 4 – 7
1. Left MLG similar.
2. Protect gear with foam rubber or clean cotton cloths, etc.

NOTES

1. Protective spool.
2. Rope.
3. Attachments rings.

LEGEND

1. Protective spool.
2. Rope.
3. Attachments rings.

AIRCRAFT TIE DOWN PROVISIONS (Sheet 1 of 2)

Figure 4 – 8
AIRCRAFT TIE DOWN PROVISIONS (Sheet 2 of 2)

Figure 4 – 8

APPROX. 3 ft (1 m)

BUNGEE CORD

TOW SPOOLS

APPROX. 3 ft (1 m)
CHAPTER 5

TERMINAL SERVICING
General Information

1. This chapter supplies ground service information for the Dash–8 Series 400.
 A. A typical servicing arrangement (no APU) is shown in Figure 5–1.
 B. Terminal operations are shown in Figure 5–2 and Figure 5–3.
 C. Locations of ground servicing points are shown in Figure 5–4.
 D. Data about the ground service connections is shown in Figure 5–5.
 E. The ground–power electrical requirements for engine starting are shown in Figure 5–6.
 F. Ground towing requirements are shown in Figure 5–7.
 G. Ground air conditioning requirements for pre conditioned airplane are shown in Figure 5–8.
LEGEND
1. Fuel truck.
2. Cabin and buffet service vehicle.
3. Ground air-conditioning unit
 (not required, if optional APU is installed).
4. Tractor with baggage carts.
5. Portable stairway.
6. DC electrical-power unit.
7. Towing tractor (if required).
8. Toilet service vehicle.
9. AC electrical-power unit.
 (if required, for maintenance activities).

NOTES
1. Zone around fuel vents – keep clear during refuelling.
2. For option 824CH00114, 824SO90105.

AIRCRAFT SERVICING ARRANGEMENT (STANDARD CONFIGURATION)
AIRCRAFT SERVICING ARRANGEMENT (TYPICAL – NO APU) (Sheet 1 of 3)

Figure 5 – 1
LEGEND

1. Fuel truck.
2. Cabin and buffet service vehicle.
3. Ground air-conditioning unit (not required, if optional APU is installed).
4. Tractor with baggage carts.
5. Portable stairway.
6. DC electrical-power unit.
7. Towing tractor (if required).
8. Toilet service vehicle.
9. AC electrical-power unit (if required, for maintenance activities).

NOTES

⚠️ Zone around fuel vents – keep clear during refuelling.

납 For option 824CH00114, 824SO90105.

AIRCRAFT SERVICING ARRANGEMENT (EXTRA CAPACITY CONFIGURATION)

AIRCRAFT SERVICING ARRANGEMENT (TYPICAL – NO APU) (Sheet 2 of 3)

Figure 5 – 1
SYSTEM

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>ADAPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE REFUELLING</td>
<td>MS 24484−2</td>
</tr>
<tr>
<td>DC ELECTRICAL POWER</td>
<td>MS 3506−1 (AIRCRAFT CONNECTOR); MS 25488 (MATING GROUND CONNECTOR)</td>
</tr>
<tr>
<td>AC ELECTRICAL POWER</td>
<td>CANNON CE9310−10 (AIRCRAFT CONNECTOR); CE9183 (MATING GROUND CONNECTOR)</td>
</tr>
<tr>
<td>GROUND AIR CONDITIONING</td>
<td>MS 33562 8.00 in. (20.32 cm); RECEPTACLE (OPTIONAL INSTALLATION)</td>
</tr>
<tr>
<td>TOILET SERVICING</td>
<td>MS 2651−133 ROYLYN ‘Y’ DRAIN COUPLING PLUS STANDARD 1.00 in. (2.54 cm) FILLPORT</td>
</tr>
<tr>
<td>GROUND CREW INTERPHONE</td>
<td>300 OHM IMPEDANCE THROAT MICROPHONE WITH SWITCH – AIRCRAFT CONNECTOR 72340012−001 (SWITCHCRAFT C−55B); MATING GROUND CONNECTOR PF051B (NATO 4−WAY JACK PLUG)</td>
</tr>
</tbody>
</table>

HYDRAULIC SYSTEM

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>EQUIPMENT INTERFACE DETAILS</th>
<th>AIRCRAFT INTERFACE DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESCRIPTION</td>
<td>SIZE</td>
</tr>
<tr>
<td>HYDRAULIC POWER UNIT (PRESSURE)</td>
<td>8</td>
<td>AE99111H</td>
</tr>
<tr>
<td>HYDRAULIC POWER UNIT (RETURN)</td>
<td>10</td>
<td>AE99140J</td>
</tr>
<tr>
<td>HYDRAULIC SERVICING/REPLENISHING DISPENSER</td>
<td>4</td>
<td>AE99140E</td>
</tr>
</tbody>
</table>

AIRCRAFT SERVICING ARRANGEMENT (TYPICAL – NO APU) (Sheet 3 of 3)

Figure 5 – 1
AIRPORT PLANNING MANUAL

RAPID TURNAROUND USING FORWARD AND AFT DOORS

Figure 5 – 2

NOTE
Forward baggage compartment and forward baggage door are removed for the extra capacity configuration.

Series: 400
<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>TIME (MINUTES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park on ramp</td>
<td></td>
</tr>
<tr>
<td>Passengers deplane (fwd door)</td>
<td></td>
</tr>
<tr>
<td>Refuel</td>
<td></td>
</tr>
<tr>
<td>Unload baggage (aft compt.)</td>
<td></td>
</tr>
<tr>
<td>(fwd compt.)</td>
<td></td>
</tr>
<tr>
<td>Service toilet</td>
<td></td>
</tr>
<tr>
<td>Housekeeping</td>
<td></td>
</tr>
<tr>
<td>Load baggage (aft compt.)</td>
<td></td>
</tr>
<tr>
<td>(fwd compt.)</td>
<td></td>
</tr>
<tr>
<td>Passengers enplane (fwd door)</td>
<td></td>
</tr>
<tr>
<td>Clear ramp</td>
<td></td>
</tr>
</tbody>
</table>

DEFINITION

DESCRIPTION

- **Park on ramp**: Aircraft stops, propellers stop turning, insert chocks. Connect external power and cooling equipment or start APU.
- **Passenger deplane**: Open forward passenger (airstair) door. Passenger use forward door to deplane with carry-on luggage.
- **Refuel**: Add fuel for 4 X 200 sm stages.
- **Unload baggage**: Remove 1.5 pieces per passenger.
- **Service toilet**: Use standard external servicing-equipment.
- **Housekeeping**: Tidy cabin, starting from rear. Service galley.
- **Load baggage**: Load and stack 1.5 pieces per passenger.
- **Passenger enplane**: Passenger stow carry-on baggage and are seated. Doors are closed.
- **Clear ramp**: Disconnect ground, external power and cooling equipment. Start engines and remove chocks.

NOTE

Forward baggage compartment and forward baggage door are removed for the extra capacity configuration.

RAPID TURNAROUND USING FORWARD DOOR ONLY

Figure 5 – 3
1. Forward passenger door.
2. Aft baggage door.
3. Forward baggage door.
4. Type II/III emergency exit.
5. Aft passenger door.
6. Flight compartment emergency exit.
7. Interphone connectors (3).
8. Lavatory service/ optional wash water service.
9. Galley service door/type I emergency exit.
10. Optional auxiliary power unit (APU).
11. Optional conditioned air connection.
12. Electrical DC power receptacle.
13. Electrical AC power receptacle (optional installation on right nose fuselage).
14. Pressure refueling panel and ground point.
15. Ground point (overwing–both sides).
16. Aircraft ground point (on undercarriage–both sides).
17. Gravity fuel filler (over wing–both sides).
18. Magnastick (fuel quantity–underwing–both sides).
19. Engine oil filler panel.
20. No.1 Hydraulic system.
21. No.2 Hydraulic system.
22. No.3 Hydraulic system.
23. Brake accumulator and hydraulic hand pump.
24. Emergency landing gear hydraulic reservoir and hand pump.
25. Nose landing gear shock strut charging point.
26. Main landing gear shock strut charging point (under nacelle–both sides).
27. Nose jacking point.
28. Wing jacking point (underwing–both sides).
29. Nose landing gear jacking point.
30. Main landing gear jacking point (both sides).
31. Crew oxygen supply.
32. Avionics bay.
33. Wardrobe.
34. Optional galley water service.
LEGEND
1. Forward passenger door.
2. Aft baggage door.
3. Forward Type I emergency exit door.
4. Aft passenger door.
5. Flight compartment emergency exit.
6. Interphone connectors (3).
7. Lavatory service/optional wash water service.
8. Galley service door/Type I emergency exit.
9. Optional auxiliary power unit (APU).
10. Optional conditioned air connection.
11. Electrical DC power receptacle.
12. Electrical AC power receptacle (optional installation on right nose fuselage).
13. Pressure refueling panel and ground point.
14. Ground point (overwing–both sides).
15. Aircraft ground point (on undercarriage–both sides).
17. Magnastick (fuel quantity–underwing–both sides).
18. Engine oil filler panel.
19. No.1 Hydraulic system.
20. No.2 Hydraulic system.
21. No.3 Hydraulic system.
22. Brake accumulator and hydraulic hand pump.
23. Emergency landing gear hydraulic reservoir and hand pump.
24. Nose landing gear shock strut charging point.
25. Main landing gear shock strut charging point (under nacelle–both sides).
27. Wing jacking point (underwing–both sides).
28. Nose landing gear jacking point.
29. Main landing gear jacking point (both sides).
30. Crew oxygen supply.
31. Avionics bay.
32. Wardrobe.
33. Optional galley water service.
AIRPORT PLANNING MANUAL

GROUND SERVICE CONNECTIONS DATA (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>DISTANCE AFT OF NOSE</th>
<th>DISTANCE FROM AIRCRAFT CENTER LINE</th>
<th>HEIGHT FROM GROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FT</td>
<td>M</td>
<td>FT</td>
</tr>
<tr>
<td>LEFT SIDE</td>
<td>RIGHT SIDE</td>
<td>LEFT SIDE</td>
<td>RIGHT SIDE</td>
</tr>
<tr>
<td>Hydraulic System (Phosphate−Ester Based Hydraulic−Fluid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access door on inboard L/H nacelle for No. 1 Hyd. System (reservoir capacity is 8 U.S. quarts, 7.57 L)</td>
<td>52 ft 2 in.</td>
<td>15.9 m</td>
<td>12 ft 11 in.</td>
</tr>
<tr>
<td>Access door on inboard R/H nacelle for No. 2 Hyd. System (reservoir capacity is 12 U.S. quarts, 11.35 L)</td>
<td>52 ft 2 in.</td>
<td>15.9 m</td>
<td>____</td>
</tr>
<tr>
<td>No. 3 Hyd. System reservoir (located in aft fuselage, 2 U.S. quarts, 1.89 L)</td>
<td>90 ft 8 in.</td>
<td>27.6 m</td>
<td>1 ft 8 in.</td>
</tr>
<tr>
<td>Electrical System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Service Connections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 volt DC External Power Receptacle (capacity is 550 A continuous, 2000 A peak)</td>
<td>4 ft 11 in.</td>
<td>1.51 m</td>
<td>2 ft 6 in.</td>
</tr>
<tr>
<td>Nacelle Location −115/200 volt A/C External Power Receptacle (capacity is 20 KVA MIN., 3−PH., 400Hz)</td>
<td>51 ft 11 in.</td>
<td>15.8 m</td>
<td>____</td>
</tr>
<tr>
<td>Nose Fuselage Location −115/200 volt A/C External Power Receptacle (capacity is 20 KVA MIN., 3−PH., 400Hz)</td>
<td>4 ft 11 in.</td>
<td>1.51 m</td>
<td>____</td>
</tr>
<tr>
<td>Oxygen System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Service Connection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charging valve for one 39.8 ft³ (1100 L) Capacity Crew Supply (in nose compartment)</td>
<td>4 ft 6 in.</td>
<td>1.37 m</td>
<td>____</td>
</tr>
<tr>
<td>Three 11.0 ft³ (311L) portable passenger cylinders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One 11.0 ft³ (311L) first−aid portable cylinder (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1. These measurements are approximate.
2. These measurements are approximate and will vary with aircraft configuration and loading conditions.
3. For option 824CH00114 and 824SO90105.

Figure 5 – 5

Series: 400

CHAPTER 5 Dec 05/2014
<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>DISTANCE AFT OF NOSE</th>
<th>DISTANCE FROM AIRCRAFT CENTER LINE</th>
<th>HEIGHT FROM GROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FT</td>
<td>M</td>
<td>FT</td>
</tr>
<tr>
<td>Fuel System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Service Points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– One Single–Point</td>
<td>58 ft</td>
<td>17.8 m</td>
<td>14 ft</td>
</tr>
<tr>
<td>Refuel/Defuel Adapter</td>
<td>7 in.</td>
<td></td>
<td>5 in.</td>
</tr>
<tr>
<td>(on Refuel/Defuel Panel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Two over–wing Gravity</td>
<td>49 ft</td>
<td>14.9 m</td>
<td>33 ft</td>
</tr>
<tr>
<td>Filling–Points</td>
<td>1 in.</td>
<td></td>
<td>1 in.</td>
</tr>
<tr>
<td>(one on each wing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– 2 pairs of Fuel Vents</td>
<td>49 ft</td>
<td>14.9 m</td>
<td>34 ft</td>
</tr>
<tr>
<td>(one pair under each wing)</td>
<td></td>
<td></td>
<td>8 in.</td>
</tr>
<tr>
<td>Landing Gear System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Servicing Points (Nitrogen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– One Shock–Strut Valve</td>
<td>51 ft</td>
<td>15.8 m</td>
<td>14 ft</td>
</tr>
<tr>
<td>on each Main Gear</td>
<td>9 in.</td>
<td></td>
<td>5 in.</td>
</tr>
<tr>
<td>– One Shock–Strut Valve</td>
<td>6 ft</td>
<td>1.88 m</td>
<td></td>
</tr>
<tr>
<td>on Nose Gear</td>
<td>2 in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Charging Valve for</td>
<td>52 ft</td>
<td>15.9 m</td>
<td>3 ft</td>
</tr>
<tr>
<td>Parking Brake</td>
<td>4 in.</td>
<td></td>
<td>11 in.</td>
</tr>
<tr>
<td>Accumulator (behind</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>access panel on R/H fuselage at wing root)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Servicing Point (Phosphate–Ester Based Hydraulic–Fluid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Filling Point for</td>
<td>4 ft</td>
<td>1.37 m</td>
<td>2 ft</td>
</tr>
<tr>
<td>reservoir of Alternate Landing–Gear Extension–System (in nose compartment) (1 U.S. quarts, 0.95 L)</td>
<td>6 in.</td>
<td></td>
<td>4 in.</td>
</tr>
</tbody>
</table>

1 These measurements are approximate.

2 These measurements are approximate and will vary with aircraft configuration and loading conditions.
<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>DISTANCE AFT OF NOSE</th>
<th>DISTANCE FROM AIRCRAFT CENTER LINE</th>
<th>HEIGHT FROM GROUND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FT</td>
<td>M</td>
<td>FT</td>
</tr>
<tr>
<td></td>
<td>LEFT SIDE</td>
<td>RIGHT SIDE</td>
<td>LEFT SIDE</td>
</tr>
<tr>
<td>Air Conditioning System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Air–Conditioning ground connection (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—One 8 inch (20.3 cm) receptacle (on R/H side of aft fuselage)</td>
<td>86 ft 4 in.</td>
<td>26.3 m</td>
<td></td>
</tr>
<tr>
<td>Toilet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Service Point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—1 Service connection on Lavatory Service Panel (capacity of toilet flush reservoir is 3.3 U.S. gallons (13 L))</td>
<td>14 ft 1 in.</td>
<td>4.29 m</td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Servicing Points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—Oil Filter behind access door on L/H side of each nacelle (tank capacity is 5.9 U.S. gallons (22.3 L))</td>
<td>40 ft 11 in.</td>
<td>12.5 m</td>
<td>15 ft 11 in.</td>
</tr>
</tbody>
</table>

⚠️ These measurements are approximate.

⚠️ These measurements are approximate and will vary with aircraft configuration and loading conditions.

GROUND SERVICE CONNECTIONS DATA (Sheet 3 of 3)

Figure 5 – 5
LEGEND
1. External DC power receptacle.
2. Battery installation.
3. DC contactor box (includes start control relays).
4. Overhead console panel.
5. Ignition box.

<table>
<thead>
<tr>
<th>CONDITIONS AT TYPICAL ENGINE START</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMINAL STARTING VOLTAGE (VDC)</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

NOTE: SET THE GROUND DC POWER CART LIMIT TO 1500 AMPS MINIMUM.

ELECTRICAL REQUIREMENTS FOR ENGINE STARTING

Figure 5–6
EXAMPLE:
At an aircraft gross weight of 50,000 lb (22,676 kg), an uphill slope of 2% and with a wet concrete surface, the corresponding draw bar pull or push required is 3,000 lb (1,360 kg) and the total traction wheel load is 5,250 lb (2,381 kg).

GROUND TOWING REQUIREMENTS

Figure 5 – 7
GROUND AIR CONDITIONING REQUIREMENTS – PRE CONDITIONED AIR

Figure 5 – 8

NOTE
Acceptable limits within shaded area.
CHAPTER 6

OPERATING CONDITIONS
AND NOISE DATA
General Information

1. Aircraft operating conditions and noise are important to airport and community planners. While an airport is a major element in an community transportation system and is vital to its growth, it must be a good neighbor. This can only be accomplished with proper planning. Because aircraft noise extends beyond the boundaries of the airport, it is vital to consider the impact on surrounding communities.

2. The Dash−8, Series 400 aircraft is designed with advanced, quiet, turboprop technology. Its noise impact is minimal compared to most aircraft, larger and smaller, currently being operated in a typical airport.

3. To help the airport planner to estimate the impact of the Dash−8 Series 400 on airport operations, the following material is provided:

 A. Engine Exhaust Temperature Contours
 (1) Data on the exhaust temperature contours at ground idle, flight idle and take−off power settings are shown in Figure 6−1, Figure 6−2, Figure 6−3, Figure 6−4, Figure 6−5 and Figure 6−6.

 B. Airport and Community Noise Data for Powerplants
 (1) Data on the takeoff and landing noise footprints for the PW150A powerplants are shown in Figure 6−7 and Figure 6−8.
 (2) The Dash−8, Series 400 complies with the Stage 3 noise−level limits under the trade−off clause specified in FAR 36, Section C36.5b and also under AWM 516 and JAR 36 standards. A summary of the certified noise levels, measured and corrected to these standards, is shown in the table that follows:

<table>
<thead>
<tr>
<th>FAR 36 Stage 3</th>
<th>Dash−8 Series 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Limit</td>
<td>Noise Level</td>
</tr>
<tr>
<td>(EPNdB)</td>
<td>(EPNdB)</td>
</tr>
<tr>
<td>Margin (EPNdB)</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Take−off</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>78.3</td>
</tr>
<tr>
<td></td>
<td>+10.7</td>
</tr>
<tr>
<td>Lateral</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>84.2</td>
</tr>
<tr>
<td></td>
<td>+9.8</td>
</tr>
<tr>
<td>Approach</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>94.9</td>
</tr>
<tr>
<td></td>
<td>+3.1</td>
</tr>
</tbody>
</table>

 C. Community Noise Data for Optional APU
 (1) The results of ramp noise tests for the optional APU are shown in Figure 6−9.

 NOTE: Exhaust temperature contours for the optional APU are not available at this time.

 D. Propeller/Engine Slipstream Velocity Contours
 (1) Data on the Propeller/Engine slipstream velocity contours as on ground (18% and 43% torque) and at maximum takeoff power settings are shown in Figure 6−10, and Figure 6−11
TOP VIEW – GROUND IDLE

ASSOCIATED CONDITIONS:
1. ALL TEMPERATURES IN °C.
2. SEA LEVEL, ZERO WIND, ISA DAY.
3. 660 RPM NP.
4. ZERO PROPELLER PRESSURE RISE ASSUMED.

ENGINE EXHAUST TEMP. CONTOURS AT GROUND IDLE – TOP VIEW

DISTANCE DOWNSTREAM FROM NOZZLES (ft)

AIRCRAFT SYMMETRY PLANE
SIDE VIEW − GROUND IDLE

ASSOCIATED CONDITIONS:
1. ALL TEMPERATURES IN °C.
2. SEA LEVEL, ZERO WIND, ISA DAY.
3. 660 RPM NP.
4. ZERO PROPELLER PRESSURE RISE ASSUMED.
ASSOCIATED CONDITIONS:
1. ALL TEMPERATURES IN °C.
2. SEA LEVEL, ZERO WIND, ISA DAY.
3. 660 RPM NP.
4. ZERO PROPELLER PRESSURE RISE ASSUMED.

ENGINE EXHAUST TEMP. CONTOURS AT FLIGHT IDLE - TOP VIEW

Figure 6 – 3
ASSOCIATED CONDITIONS:
1. ALL TEMPERATURES IN °C.
2. SEA LEVEL, ZERO WIND, ISA DAY.
3. 660 RPM NP.
4. ZERO PROPELLER PRESSURE RISE ASSUMED.

GROUND
ASSOCIATED CONDITIONS:
1. ALL TEMPERATURES IN °C.
2. SEA LEVEL, ZERO WIND, ISA DAY.
3. 100% NP.
4. ZERO PROPELLER PRESSURE RISE ASSUMED.

Figure 6 – 5

ENGINE EXHAUST TEMP. CONTOURS AT MAX. T.O. POWER – TOP VIEW
SIDE VIEW – MAX. TAKE-OFF

ASSOCIATED CONDITIONS:
1. ALL TEMPERATURES IN °C.
2. SEA LEVEL, ZERO WIND, ISA DAY.
3. 100 % NP.
4. ZERO PROPELLER PRESSURE RISE ASSUMED.
RUNWAY = 1000 FT
HEIGHT ABOVE
DISTANCE TO SIDE
1000 - FT
DISTANCE FROM RUNWAY THRESHOLD = 1000 FT

ASSOCIATED CONDITIONS: 1. SEA LEVEL, ISA + 10° C., ZERO WIND.
2. TAKEOFF WT. = 63,250 lb (28,750 kg).
3. LANDING WT. = 61,250 lb (27,841 kg).

TAKEOFF AND LANDING NOISE FOOTPRINT – 3 DEGREE APPROACH

Figure 6 – 7
4 DEGREES APPROACH
AT 1020 RPM
35 DEG. FLAPS

15.81 % TAKEOFF GRADIENT
AT 1020 RPM

9.2 % CLIMB GRADIENT
AT MAX. CLIMB POWER

CUTBACK ALTITUDE
1000 ft

DISTANCE FROM RUNWAY THRESHOLD − 1000 FT

HEIGHT ABOVE RUNWAY − 1000 FT

ASSOCIATED CONDITIONS:
1. SEA LEVEL. ISA + 10°C., ZERO WIND.
2. TAKEOFF WT. − 63,250 lb (28,750 kg).
3. LANDING WT. − 61,250 lb (27,841 kg).

NOISE LEVEL (dBA)	(SQ. MILES)	(SQ. KM)
70 | 2.381 | 6.166
75 | 1.149 | 2.975
80 | 0.529 | 1.369
85 | 0.252 | 0.652

SCALE: 1 in. = 6000 ft.
APU / ECS NOISE READINGS

<table>
<thead>
<tr>
<th>POSITION</th>
<th>dB(A)</th>
<th>POSITION</th>
<th>dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>84</td>
<td>17</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
<td>18</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>19</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>79</td>
<td>20</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>81</td>
<td>21</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>82</td>
<td>22</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>83</td>
<td>23</td>
<td>63</td>
</tr>
<tr>
<td>9</td>
<td>84</td>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>25</td>
<td>69</td>
</tr>
<tr>
<td>11</td>
<td>84</td>
<td>26</td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>83</td>
<td>27</td>
<td>75</td>
</tr>
<tr>
<td>13</td>
<td>82</td>
<td>28</td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>83</td>
<td>29</td>
<td>73</td>
</tr>
<tr>
<td>15</td>
<td>82</td>
<td>30</td>
<td>78</td>
</tr>
</tbody>
</table>

OPERATING CONDITIONS
- Air conditioning packs operating: 2
- APU shaft speed: 100% or 64,154 RPM
- APU normal rated speed: 64,154 RPM
- APU shaft load: 65% or 260 Amps (100% = 400 Amps)
- Pneumatic load: 36.3 kg/min
- APU exhaust gas temperature: 1,173 °C
- ACM operating mode: maximum cooling
- Recirculation fan: on

NOTE
Forward type I emergency exit door is installed only on aircraft with extra capacity configuration.

RAMP NOISE TEST RESULTS FOR OPTIONAL APU

Figure 6 - 9
PROPELLER/ENGINE SLIPSTREAM VELOCITY CONTOURS
(MAXIMUM TAKEOFF POWER)

DISTANCE FROM AIRCRAFT CENTERLINE (FT)

DISTANCE DOWNSTREAM PROPELLER PLANE (FT)

PROPELLER / ENGINE SLIPSTREAM VELOCITY CONTOUR AT MAXIMUM TAKEOFF POWER

Figure 6 – 10
PROPELLER/ENGINE SLIPSTREAM VELOCITY CONTOURS (~18% TORQUE)
(STATIONARY ON GROUND)

DISTANCE DOWNSTREAM PROPELLER PLANE (FT)
DISTANCE FROM AIRCRAFT CENTERLINE (FT)

PROPELLER/ENGINE SLIPSTREAM VELOCITY CONTOURS (~43% TORQUE)
(STATIONARY ON GROUND)

DISTANCE DOWNSTREAM PROPELLER PLANE (FT)
DISTANCE FROM AIRCRAFT CENTERLINE (FT)

Figure 6 – 11
CHAPTER 7

PAVEMENT DATA
General Information

1. The pavement requirements for commercial aircraft are customarily derived from the static analysis loads imposed on the main landing-gear wheels and tires through the shock struts.
 A. Basic data on the landing-gear footprint configuration, maximum-design taxi loads, and tire sizes and pressures are shown in Figure 7-1.
 B. Maximum pavement loads for certain critical conditions at the tire-ground interfaces are shown in Figure 7-2.
 C. Landing-gear loading on pavement at various aircraft weights is shown in Figure 7-3.
 D. The California Bearing Ratio (CBR) for unlimited commercial use at all aircraft weights is shown in Figure 7-4 and Figure 7-5.
 E. The minimum Load Classification Number (LCN) for flexible and rigid pavement are shown in Figure 7-6, Figure 7-7, Figure 7-8 and Figure 7-9.
 F. The minimum Aircraft Classification Number (ACN) for flexible and rigid pavement are shown in Figure 7-10, Figure 7-11, Figure 7-12 and Figure 7-13.

2. Make sure that all runways or pavements to be used meet these minimum CBR, LCN and ACN requirements.
MAXIMUM DESIGN TAXI WEIGHT
- **64,700 lb**
 - (29,347 kg)

PERCENTAGE WEIGHT ON MAIN GEAR
- (REFER TO LANDING GEAR LOADING ON PAVEMENT ILLUSTRATION)

NOSE–GEAR TIRE SIZE
- 22 x 6.50 – 10

NOSE–GEAR TIRE PRESSURE
- 85 PSI (586 kPa) UNLOADED
- 89 PSI (614 kPa) LOADED

MAIN–GEAR TIRE SIZE
- 32 x 8.8 –16 STANDARD
- 34 x 10.75 – 16 OPTIONAL

MAIN–GEAR TIRE PRESSURE
- STD – 218 PSI (1503 kPa) UNLOADED
- 227 PSI (1565 kPa) LOADED
- OPT – 135 PSI (931 kPa) UNLOADED
- 141 PSI (972 kPa) LOADED

NOTE
Tire pressures shown are for calculation purposes only.
Refer to AMM Ch. 12 for service pressure.

LANDING GEAR FOOTPRINT

Figure 7 – 1

Series: 400
NOTES:

All loads calculated using aircraft Maximum Design Taxi Weight.

\[V_{NG} = \text{Maximum Vertical Nose-Gear Ground Load at Most Forward C.G.} \]
\[V_{MG} = \text{Maximum Vertical Main-Gear Ground Load at Most Aft C.G.} \]
\[H = \text{Maximum Horizontal Ground Load from Braking.} \]

\[\text{Upper C.G. limit is approximately 12.77 ft (3.89 m) above ground line.} \]
\[\text{Maximum main-gear horizontal-force excludes the alleviating effect of nose-gear rolling friction.} \]
\[\text{Instantaneous braking applied during a steady braking run.} \]

MAXIMUM PAVEMENT LOADS

Figure 7 - 2
NOTE
Unshaded area represents operational limits.

LANDING GEAR LOADING ON PAVEMENT

Figure 7 − 3
FLEXIBLE PAVEMENT REQUIREMENTS – CBR (32X8.8−16 TIRES)

Figure 7 − 4

NOTES
1. Tires are 32 x 8.8−16 (21.0 in. centers), inflated to 227 psi (1565 kPa), loaded.
2. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
3. Max. Aft C.G. (36% MAC at approx. 94% of weight on MLG).
4. U.S. Army Corps of Engineers design method (S−77−1) and FAA design method used.

FLEXIBLE PAVEMENT THICKNESS (INCHES)

CALIFORNIA BEARING RATIO (CBR)
NOTES
1. Tires are 34 x 10.75−16 (19.5 in. centers), inflated to 141 psi (972 kPa), loaded.
2. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
3. Max. Aft C.G. (36% MAC at approx. 94% of weight on MLG).
4. U.S. Army Corps of Engineers design method (S−77−1) and FAA design method used.

FLEXIBLE PAVEMENT REQUIREMENTS − CBR (34X10.75−16 TIRES)

Figure 7 − 5

Series: 400
1. Tires are 32 x 8–16 (21.0 in. centers).
2. 27 psi (1565 kPa) inflation pressure (loaded).
3. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
4. Max. Alt. C.G. (36% at approx. 94% of weight on MLG).
NOTES

1. Tires are 34 x 10.75-16 (19.5 in. centers).
2. 141 psi (972 kPa) inflation pressure (loaded).
3. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
4. Max. Aft C.G. (36% MAC at approx. 94% of weight on MLG).
AIRPORT PLANNING MANUAL

EQUIVALENT SINGLE WHEEL LOAD (ESWL)

RADIUS OF RELATIVE STIFFNESS (L)

LOAD CLASSIFICATION NUMBER (LCN)

AIRCRAFT WEIGHT

A - 64,700 LB
B - 55,000 LB
C - 45,000 LB
D - 35,000 LB

NOTES
1. Tires are 32 x 8.8-16 (21.0 in. centers).
2. 227 psi (1565 kPa) inflation pressure (loaded).
3. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
4. Max. Alt. C.G. (36% MAC at approx. 94% of weight on MLG).

Figure 7 – 8
AIRPORT PLANNING MANUAL

Figure 7-9

EQUIVALENT SINGLE - WHEEL LOAD (ESWR)

RIGID PAVEMENT REQUIREMENTS – LCN CONVERSION (34X10.75-16 TIRES)

NOTES
1. Tires are 34 x 10.75-16 (19.5 in. centers).
2. 141 psi (972 kPa) inflation pressure (loaded).
3. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
4. Max. Aft C.G. (36% MAC at approx. 94% of weight on MLG).

Series: 400

CHAPTER 7
Page 10
May 28/2001
NOTES
1. Tires are 32 x 8.8−16 (21.0 in. centers).
2. 227 psi (1565 kPa) inflation pressure (loaded).
3. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
4. Max. Aft C.G. (36% MAC at approx. 94% of weight on MLG).

AIRCRAFT CLASSIFICATION NUMBER – FLEXIBLE PAVEMENT (32X8.8−16 TIRES)

Figure 7 − 10
NOTES
1. Tires are 34 x 10.75–16 (19.5 in. centers).
2. 141 psi (972 kPa) inflation pressure (loaded).
3. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
4. Max. Aft C.G. (36% MAC at approx. 94% of weight on MLG).

AIRPORT PLANNING MANUAL

AIRCRAFT CLASSIFICATION NUMBER − FLEXIBLE PAVEMENT (34X10.75–16 TIRES)

Figure 7 – 11

<table>
<thead>
<tr>
<th>AIRCRAFT CLASSIFICATION NUMBER (ACN)</th>
<th>AIRCRAFT GROSS WEIGHT (LBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A − CBR 15</td>
<td>30000</td>
</tr>
<tr>
<td>B − CBR 10</td>
<td>35000</td>
</tr>
<tr>
<td>C − CBR 6</td>
<td>40000</td>
</tr>
<tr>
<td>D − CBR 3</td>
<td>45000</td>
</tr>
<tr>
<td></td>
<td>50000</td>
</tr>
<tr>
<td></td>
<td>55000</td>
</tr>
<tr>
<td></td>
<td>60000</td>
</tr>
<tr>
<td></td>
<td>65000</td>
</tr>
</tbody>
</table>
NOTES
1. Tires are 32 x 8.8−16 (21.0 in. centers).
2. 227 psi (1565 kPa) inflation pressure (loaded).
3. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
4. Max. Aft C.G. (36% MAC at approx. 94% of weight on MLG).

AIRCRAFT CLASSIFICATION NUMBER – RIGID PAVEMENT (32X8.8−16 TIRES)

Figure 7 – 12
NOTES
1. Tires are 34 x 10.75–16 (19.5 in. centers).
2. 141 psi (972 kPa) inflation pressure (loaded).
3. Tire pressure is for calculation purposes only, refer to AMM Ch 12 for service pressures.
4. Max. Aft C.G. (36% MAC at approx. 94% of weight on MLG).

AIRPORT CLASSIFICATION NUMBER – RIGID PAVEMENT (34X10.75–16 TIRES)

Figure 7 – 13
CHAPTER 8
DERIVATIVE AIRCRAFT
General Information

1. There are no plans to develop any derivative aircraft at this time.
CHAPTER 9

SCALED DRAWINGS OF DASH-8 SERIES 400
General Information

1. The scaled drawings that follow can be used to plan/verify runway, ramp and maintenance facility layouts.

 A. The 1 in. = 32 ft. (1:384) scaled drawing is shown in Figure 9−1.

 B. The 1 in. = 50 ft (1:600) and 1 in. = 100 ft (1:1200) scaled drawings are shown in Figure 9−2.

 C. The 1:500 and 1:1000 (Metric) scaled drawings are shown in Figure 9−3.
1 IN = 32 FT (1:384)

LEGEND

A1 Air conditioning.
A2 Ground air-conditioning connection (if no APU is installed).
B1 Forward baggage compartment/forward type I emergency exit door
 Type I emergency exit door is installed only on aircraft with extra capacity configuration.
B2 Aft baggage compartment.
E1 Electrical connection (DC).
E2 Electrical connection (AC).
F Pressure refueling point.
L Lavatory.
MLG Main landing gear.
NLG Nose landing gear.
V Fuel vent (on both wings).
X1 Forward passenger airstair door.
X2 Type II/III emergency exit.
X3 Aft passenger door.
X4 Galley service door.
+ Turning radius points: 70°, 60°, 50°, 40°, 30°, 25°, 20°.

NOTES

1 Forward type I emergency exit door is installed only on aircraft with extra capacity configuration.

2 Type II/III emergency exit door is de-activated for the extra capacity configuration.

SCALE DASH 8, SERIES 400 (MODEL 402) DRAWING − 1 IN. = 32 FT (1:384)

Figure 9 − 1
LEGEND
A1 Air conditioning.
A2 Ground air-conditioning connection (if no APU is installed).
B1 Forward baggage compartment/
 forward type I emergency exit door
 ▲
B2 Aft baggage compartment.
E1 Electrical connection (DC).
E2 Electrical connection (AC).
F Pressure refueling point.
L Lavatory.
MLG Main landing gear.
NLG Nose landing gear.
V Fuel vent (on both wings).
X1 Forward passenger airstair door.
X2 Type II/III emergency exit.
 ▼
X3 Aft passenger door.
X4 Galley service door.
 + Turning radius points: 70°, 60°, 50°, 40°, 30°, 25°, 20°.

NOTES
▲ Forward type I emergency exit door is installed only on aircraft with extra capacity configuration.
▼ Type II/III emergency exit door is de-activated for the extra capacity configuration.

SCALEd (MODEL 402) DRAWING − 1 IN. = 50 FT (1:600), 1 IN. = 100 FT (1:1200)

Figure 9 – 2
LEGEND

A1 Air conditioning.
A2 Ground air-conditioning connection (if no APU is installed).
B1 Forward baggage compartment/
 forward type I emergency exit door 1
B2 Aft baggage compartment.
E1 Electrical connection (DC).
E2 Electrical connection (AC).
F Pressure refueling point.
L Lavatory.
MLG Main landing gear.
NLG Nose landing gear.
V Fuel vent (on both wings).
X1 Forward passenger airstair door.
X2 Type II/III emergency exit 2
X3 Aft passenger door.
X4 Galley service door.
+ Turning radius points: 70°, 60°, 50°, 40°, 30°, 25°, 20°.

NOTES

1 Forward type I emergency exit door is installed only on aircraft with extra capacity configuration.
2 Type II/III emergency exit door is de-activated for the extra capacity configuration.

Figure 9 – 3